• 제목/요약/키워드: Building comfort

Search Result 332, Processing Time 0.03 seconds

The Technology Applied 3 Liter House, Super Energy Saving Building (3L House의 설계, 시공 및 평가)

  • Park, Sun-Hyo;Park, Yong-Seung;Won, Jong-Seo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.814-819
    • /
    • 2006
  • This research is on the design and introducing of integrated thermal performance of super energy saying building, called 3 Liter house which can be sustained with 3 liter oil(kerosene) per $yr.m^2$. 3 liter houses(Passive houses) offer extended living comfort with only 15 to 20% of the space heating demand of conventional new building. To achieve this purpose, the efficiency of building components is improved, such as walls, windows or ventilation system and the construction technology is improved, such as the prevention of thermal bridge and the air tightness. The fuel cell is used as alternative energy. Energy consumption of 3L house is 2.08 [liter/$yr.m^2$] in monitoring result of $2006/2/1{\sim}2/7$ and ACH50 is 0.67 in result of Blow Door Test, therefore 3L House is well- insulated and well- airtighted house.

  • PDF

Control of Asymmetrical Tall Buildings under Wind Loading (비대칭 고층건물의 내풍 및 제진 해석)

  • 민경원;김진구;조한욱
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.203-211
    • /
    • 1997
  • In the design of tall building system, the wind loading can be more dominant factor than earthquake loading, and thus, it is important to check the stability and human comfort against wind. Experimental wind tunnel test is usually performed to predict wind behavior of a tall building, however, the test is not cost-effective in the preliminary stage for various structural models of tall building systems. In this regard, the study is focused on the numerical wind analysis of the tall building with and without tuned mass dampers based on the three dimensional model of wind loads and building behavior. As a numerical result, an asymmetrical 102-story tall building is presented to show the results of root mean squares of build responses with and without tuned mass dampers.

  • PDF

A Study on Greenspace Planning Strategies for Thermal Comfort and Energy Savings (열쾌적성과 에너지절약을 위한 녹지계획 전략 연구)

  • Jo, Hyun-Kil;Ahn, Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.3
    • /
    • pp.23-32
    • /
    • 2010
  • The purpose of this study is to quantify human energy budgets for different structures of outdoor spatial surfaces affecting thermal comfort, to analyze the impacts of tree shading on building energy savings, and to suggest desirable strategies of urban greenspace planning concerned. Concrete paving and grass spaces without tree shading and compacted-sand spaces with tree shading were selected to reflect archetypal compositional types for outdoor spatial materials. The study then estimated human energy budgets in static activity for the 3 space types. Major determinants of energy budgets were the presence of shading and also the albedo and temperature of base surfaces. The energy budgets for concrete paving and grass spaces without tree shading were $284\;W/m^2$ and $226\;W/m^2$, respectively, and these space types were considerably poor in thermal comfort. Therefore, it is desirable to construct outdoor resting spaces with evapotranspirational shade trees and natural materials for the base plane. Building energy savings from tree shading for the case of Daegu in the southern region were quantified using computer modeling programs and compared with a previous study for Chuncheon in the middle region. Shade trees planted to the west of a building were most effective for annual savings of heating and cooling energy. Plantings of shade trees in the south should be avoided, because they increased heating energy use with cooling energy savings low in both climate regions. A large shade tree in the west and east saved cooling energy by 1~2% across building types and regions. Based on previous studies and these results, some strategies including indicators for urban greenspace planning were suggested to improve thermal comfort of outdoor spaces and to save energy use in indoor spaces. These included thermal comfort in construction materials for outdoor spaces, building energy savings through shading, evapotranspiration and windspeed mitigation by greenspaces, and greenspace areas and volume for air-temperature reductions. In addition, this study explored the application of the strategies to greenspace-related regulations to ensure their effectiveness.

Analysis of energy and daylight performance of adjustable shading devices in region with hot summer and cold winter

  • Freewan, Ahmed A.;Shqra, Lina W.
    • Advances in Energy Research
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2017
  • Large glazed surfaces and windows become common features in modern buildings. The spread of these features was influenced by the dependence of designers on mechanical and artificial systems to provide occupants with thermal and visual comfort. Countries with hot summer and cold winter conditions, like Jordan, require maximum shading from solar radiation in summer, and maximum exposure in winter to reduce cooling and heating loads respectively. The current research aims at designing optimized double-positioned external shading device systems that help to reduce energy consumption in buildings and provide thermal and visual comfort during both hot and cold seasons. Using energy plus, a whole building energy simulation program, and radiance, Lighting Simulation Tool, with DesignBuilder interface, a series of computer simulations for energy consumption and daylighting performance were conducted for offices with south, east, or west windows. The research was based on comparison to determine the best fit characteristics for two positions of adjustable horizontal louvers on south facade or vertical fins on east and west facades for summer and winter conditions. The adjustable shading systems can be applied for new or retrofitted office or housing buildings. The optimized shading devices for summer and winter positions helped to reduce the net annual energy consumption compared to a base case space with no shading device or with curtains and compared to fix shading devices.

A Study on Evaluation of Natural Ventilation Rate and Thermal Comfort during the Intermediate Season considering by Window Layout and Open Window Ratio (학교 교실의 창호 배치 및 개방면적비에 따른 중간기 자연환기량 및 쾌적성 평가에 관한 연구)

  • Kim, Yeo-Jin;Choi, Jeong-Min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.207-214
    • /
    • 2019
  • Natural ventilation through openings such as windows in school buildings is an efficient resource for natural cooling during the intermediate season of the year. Because the natural ventilation uses the wind outside the building, the amount of ventilation will depend not only on the wind speed and wind direction but also on the window layout and open window ratio. Therefore, in this study, the natural ventilation plans of school classroom windows are divided into 4 types and 8 cases as shown in Table 1. The characteristics of cooling effect by natural ventilation are simulated by applying Energyplus's Airflow Network Model and the comfort of the occupants is evaluated by the number of hours included in the 80% acceptability range of the ASHRAE Standard 55-2010 adaptive comfort model for the weekdays (Monday-Friday) and the class hours (08: 00-19: 00). Based on the analysis results of the above, this study presents basic data related to classroom cooling plan using intermediate season natural ventilation.

Sustainable Tall Buildings: Summary of Energy-Efficient Design

  • Kheir Al-Kodmany;Mir M. Ali;Paul J. Armstrong
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.107-120
    • /
    • 2023
  • Tall buildings are frequently decried as unsustainable due to their excessive energy usage. Early skyscrapers used natural light and ventilation to facilitate human comfort and applied organic materials such as stone, glass, wood, concrete, and terra cotta for cladding and finishes. With the advent of fluorescent lighting, modern heating, ventilation, air-conditioning (HVAC) systems, and thermally sealed curtain walls, tall office buildings no longer had to rely on natural light and ventilation to provide comfort. Energy efficiency was not a significant factor when the operational costs of buildings were relatively inexpensive. However, today's skyscrapers must become more energy-efficient and sustainable due to energy crises and climate change. This paper highlights vital energy-efficient design principles and demonstrates with illustrative case studies how they are applied to tall buildings in various parts of the world. It shows how sustainable environmental systems do not act alone but are integrated with advanced curtain wall systems, sky gardens, and atria, among others, to regulate and sustain thermal comfort and conserve energy.

Recognition of Occupants' Cold Discomfort-Related Actions for Energy-Efficient Buildings

  • Song, Kwonsik;Kang, Kyubyung;Min, Byung-Cheol
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.426-432
    • /
    • 2022
  • HVAC systems play a critical role in reducing energy consumption in buildings. Integrating occupants' thermal comfort evaluation into HVAC control strategies is believed to reduce building energy consumption while minimizing their thermal discomfort. Advanced technologies, such as visual sensors and deep learning, enable the recognition of occupants' discomfort-related actions, thus making it possible to estimate their thermal discomfort. Unfortunately, it remains unclear how accurate a deep learning-based classifier is to recognize occupants' discomfort-related actions in a working environment. Therefore, this research evaluates the classification performance of occupants' discomfort-related actions while sitting at a computer desk. To achieve this objective, this study collected RGB video data on nine college students' cold discomfort-related actions and then trained a deep learning-based classifier using the collected data. The classification results are threefold. First, the trained classifier has an average accuracy of 93.9% for classifying six cold discomfort-related actions. Second, each discomfort-related action is recognized with more than 85% accuracy. Third, classification errors are mostly observed among similar discomfort-related actions. These results indicate that using human action data will enable facility managers to estimate occupants' thermal discomfort and, in turn, adjust the operational settings of HVAC systems to improve the energy efficiency of buildings in conjunction with their thermal comfort levels.

  • PDF

Study on the Accuracy Comparison of AIRVIEW used for various duct flows (다양한 덕트유동해석에 사용된 AIRVIEW의 정확성 비교에 관한 연구)

  • Kwon, Yong-Il;Yeom, Dong-Seok;Han, Hwa-Taik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.383-388
    • /
    • 2008
  • We are now developing a CFD program, AIRVIEW, with several numerical models and the SIMPLER solving method for constructing flow field and thermal comfort. This study is carried out for evaluating an accuracy of AIRVIEW. Comparisons of accuracy are carried out using Phoenics Version 3.4. In this study, we compare the turbulent kinetic energy distribution and local turbulent Re number obtained with Phoenics with those results simulated by AIRVIEW for three kinds of duct. It is observed from comparison of results that the turbulent kinetic energy values are significant due to the large velocity gradients in the region of flow. Numerical results for turbulent kinetic energy distribution and local turbulent Re number are that a good degree of agreement is found.

  • PDF

Transparency in Urban Environment

  • Leung, Luke;Zhu, Yue;Ray, Stephen D.;Jevtic, Adri
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.187-196
    • /
    • 2017
  • A generation of tall buildings has been dominated by International Style with full height glazing that is often vision glass. Large glass was intended to bring the outside in, to allow a connection to the natural environment, and to promote daylighting. Yet the glass box model of architecture is now under criticism due to expense to build, thermal and visual comfort issues for occupants, large carbon footprints, danger for birds, and aesthetic concerns with lack of transparency. This paper will take a fresh look at glass, transparency, energy consumption, and human health before offering alternative paths forward.

Thermal Environment Analysis by the Diffusion Direction with Ceiling Type Air Conditioner of the Classroom (학교 교실의 천장형 에어컨 토출각도에 따른 온열환경 해석)

  • AHN, Chul-Lin;KIM, Dong-Gyue;KUM, Jong-Soo;PARK, Hee-Ouk;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.2
    • /
    • pp.145-154
    • /
    • 2005
  • It is necessary to develop new air-conditioning method which can be satisfied individual separated space and request of occupants. The indoor thermal environment and flow field are investigated both experimentally and numerically. This study concentrated on analysis of indoor thermal environment by diffusion direction of ceiling type air conditioner of the classroom. The velocity and temperature distribution of air in the room calculated by 3-dimensional method, which include the effect of insulation of the building and outdoor state. This analysis shows that optimum diffusion direction is $30^{\circ}$ to increase thermal comfort in winter and optimum diffusion direction is $15^{\circ}$ to increase thermal comfort in summer.