• Title/Summary/Keyword: Building Structures

Search Result 3,974, Processing Time 0.031 seconds

A study on the methods of identifying and verifying the causes of defects on rock bolt stressmeter and rod extensometer (터널계측용 록볼트축력계와 지중변위계의 불량원인 파악과 검증방법에 대한 연구)

  • Kim, Yeong-Bae;Noh, Won-Seok;Lee, Seong-Won;Jeon, Hunmin;Lee, Kang-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.411-429
    • /
    • 2022
  • Instrumentations are essential in NATM tunnels, however measuring instruments are installed and applied without performance verification procedures due to insufficient research on methods, procedures, regulations, etc. to verify the reliability of the measuring instruments. In this study, domestic and foreign regulations relating to the verification and calibration of instruments were investigated and necessities for accreditation standards were proposed. In order to identify the causes of the defects, an external inspection was performed on rock bolt stressmeter and rod extensometer, which are measuring instruments with relatively complex structures. For verifying the performance of these instruments, verification devices were developed that can load step-by-step and the causes of defects were identified in measuring instruments of nine domestic manufacturers. Through the performance test, a number of measuring instruments were found to be defective. It was important to test the performance of the instruments in the state of a finished product and accordingly performance inspection methods and procedures were proposed. The results of this study are expected to help preparing related regulations for verifying instrument performance and selecting instruments in the field.

Quantifying Chloride Ingress in Cracked Concrete Using Image Processing (이미지 분석을 이용한 균열 콘크리트 내 염화물 침투 정량화 평가)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • Chloride, which is one of the main deterioration factors in reinforced concrete structures, can degrade the performance of the structure due to chloride-induced corrosion of steel. Chloride content at steel depth or the rate of chloride penetration is necessary to determine deterioration of reinforced concrete or to calculate initiation time of steel corrosion caused by chloride attack. Chlorides in concrete are generally identified with typical two methods including chloride profiling using potentiometric titration method and discoloration method using AgNO3 solution. The former is advantageous to estimate chloride penetration rate (diffusion coefficient in general) with measured chloride contents directly, but it is laborious. In the case of latter, while the result is obtained easily with the range of discoloration, the error may occur depending on workmanship when the depth of chloride ingress is measured. This study shows that chloride penetrated depth is evaluated with the results obtained from discoloration method through image analysis, thereby the error is minimized by workmanship. In addition, the effect of micro-crack in concrete is studied on chloride penetration. In conclusion, the depth of chloride penetration was quantified with image analysis and as it was confirmed that chlorides can rapidly penetrate through micro-cracks, caution is especially required for cracks in concrete structure.

Development of web-based system for ground excavation impact prediction and risk assessment (웹기반 굴착 영향도 예측 및 위험도 평가 시스템 개발)

  • Park, Jae Hoon;Lee, Ho;Kim, Chang Yong;Park, Chi Myeon;Kim, Ji Eun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.559-575
    • /
    • 2021
  • Due to the increase in ground excavation work, the possibility of ground subsidence accidents is increasing. And it is very difficult to prevent these risk fundamentally through institutional reinforcement such as the special law for underground safety management. As for the various cases of urban ground excavation practice, the ground subsidence behavior characteristics which is predicted using various information before excavation showed a considerable difference that could not be ignored compared to the results real construction data. Changes in site conditions such as seasonal differences in design and construction period, changes in construction methods depending on the site conditions and long-term construction suspension due to various reasons could be considered as the main causes. As the countermeasures, the safety management system through various construction information is introduced, but there is still no suitable system which can predict the effect of excavation and risk assessment. In this study, a web-based system was developed in order to predict the degree of impact on the ground subsidence and surrounding structures in advance before ground excavation and evaluate the risk in the design and construction of urban ground excavation projects. A system was built using time series analysis technique that can predict the current and future behavior characteristics such as ground water level and settlement based on past field construction records with field monitoring data. It was presented as a geotechnical data visualization (GDV) technology for risk reduction and disaster management based on web-based system, Using this newly developed web-based assessment system, it is possible to predict ground excavation impact prediction and risk assessment.

Evaluation of Freeze-Thaw Damage on Concrete Using Nonlinear Ultrasound (초음파의 비선형 특성을 이용한 콘크리트 동결융해 손상 평가)

  • Choi, Ha-Jin;Kim, Ryul-Ri;Lee, Jong-Suk;Min, Ji-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.56-64
    • /
    • 2021
  • Leakage due to deterioration and damage is one of the major causes of volume change by freezing and thawing, and it leads micro-cracking and surface scaling in concrete structures. The deterioration of damaged concrete accelerates with the chloride attack. Thus, in the detailed guidelines for facility performance evaluation (2020), the quality of cover concrete and the freeze-thaw (FT) repetition cycle were newly suggested for concrete durability assessment. The quality of cover concrete should be evaluated by the rebound hammer test and the FT repetition cycle should be also considered in the deterioration environmental assessment. This study suggested the application of fast dynamic based nonlinear ultrasound method to monitor initial micro-scale damage under freezing and thawing environment. Concrete specimens were fabricated with different water-cement ratios (40%, 60%) and air contents (1.5% and 3.0%). The compressive strength, rebound number, relative dynamic modulus, and nonlinear ultrasound were measured with different FT cycles. The scanning electron microscopy was also performed to investigate the micro-scale FT damage. As a result, both the rebound number and the relative dynamic modulus had difficulty to detect early damage but the proposed method showed a potential to detect initial micro-scale damage and predict the FT resistance performance of concrete.

A Code Clustering Technique for Unifying Method Full Path of Reusable Cloned Code Sets of a Product Family (제품군의 재사용 가능한 클론 코드의 메소드 경로 통일을 위한 코드 클러스터링 방법)

  • Kim, Taeyoung;Lee, Jihyun;Kim, Eunmi
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • Similar software is often developed with the Clone-And-Own (CAO) approach that copies and modifies existing artifacts. The CAO approach is considered as a bad practice because it makes maintenance difficult as the number of cloned products increases. Software product line engineering is a methodology that can solve the issue of the CAO approach by developing a product family through systematic reuse. Migrating product families that have been developed with the CAO approach to the product line engineering begins with finding, integrating, and building them as reusable assets. However, cloning occurs at various levels from directories to code lines, and their structures can be changed. This makes it difficult to build product line code base simply by finding clones. Successful migration thus requires unifying the source code's file path, class name, and method signature. This paper proposes a clustering method that identifies a set of similar codes scattered across product variants and some of their method full paths are different, so path unification is necessary. In order to show the effectiveness of the proposed method, we conducted an experiment using the Apo Games product line, which has evolved with the CAO approach. As a result, the average precision of clustering performed without preprocessing was 0.91 and the number of identified common clusters was 0, whereas our method showed 0.98 and 15 respectively.

Evaluation on the Bending Behavior After Yield of RC Beam by Using Image Processing Method(II): Focused on the Tensile Part (영상 분석 기법을 이용한 RC 부재의 항복 후 휨 거동 분석(II): 인장부를 중심으로)

  • Kim, Kun-Soo;Park, Ki-Tae;Woo, Tae-Ryeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.47-53
    • /
    • 2022
  • As the limit state design method is applied as a method of designing concrete structures, the ultimate state is considered in the analysis or design. In fact, when the reinforced concrete member bears tensile force, the force is transmitted from the rebar to the concrete, and the structure bears the tensile force to the ultimate state even after yield. Therefore, the accurate evaluation of behavior after yield, it is necessary to study the tension stiffening effect after yield of the flexural member. In this study, a 4-point bending test was conducted on the RC simple beam having a rectangular cross section of the double reinforcement, and the behavior of the member was analyzed in detail using the image analysis method. Using the analysis results, the estimation formula for the tension stiffening effect after yield was proposed, and the applicability of this was verified through the experimental results of existing study. The difference between the ultimate strain and the yield strain representing the ductile behavior of the member is similar to the experimental results. The prediction of the proposed formula is relatively accurate.

Mobile Underground High-capacity 3D Spatial Information Tiling Transfer Protocol Development (모바일 지하 대용량 3D 공간정보 타일링 전송 프로토콜 개발)

  • Lee, Tae Hyung;Jo, Won Je;Kim, Hyun Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.491-496
    • /
    • 2021
  • In line with the modern era in which the safety of underground facilities and the use of underground information are increasingly emphasized, the state is pushing for more precise and accurate underground spatial information to be secured and utilized. Therefore, we need to pay more attention to subsurface geospatial data. In the future, the Ministry of Land, Infrastructure and Transport will actively utilize the 15 types of Integrated Underground Geospatial Information Map(6 types of underground facilities, 6 types of underground structures, 3 types of ground) that the Ministry of Land, Infrastructure and Transport is building as three-dimensional underground spatial information, and contribute greatly to improving national safety and convenience in underground construction. expected to do However, when a site manager requests an Integrated Underground Geospatial Information Map with a mobile device, if the large-capacity integrated underground space map is not quickly transmitted over the wireless section and is not serviced, it causes inconvenience to the site manager and delays work. In this paper, the goal of this paper is to enable field managers to quickly receive a tiled Integrated Underground Geospatial Information Map with minimal information exchange. Therefore, the tiling system is configured according to the dataset for high-speed Mobile Integrated Underground Geospatial Information Map transmission. In addition, a transmission system for the Mobile Integrated Underground Geospatial Information Map is established, and a TCP/IP (Transmission Control Protocol/Internet Protocol)-based spatial information tiling transmission protocol dedicated to the on-site Integrated Underground Geospatial Information Map is developed.

Evaluation on Side Resistance of Drilled Shafts Constructed on Sandy Gravel and Gravel Layers in Nakdong River Estuary (낙동강 하구 모래 자갈 및 자갈층에 시공된 현장타설말뚝의 주면마찰력 평가)

  • Dong-Lo Choi;Tae-Hyung Kim;Byeong-Han Jeon;Jun-Seo Jeon;Chea-Min, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Recently, numerous structures have been constructed near the Nakdong river estuary, with pile foundations embedded in sand and gravel layers. In this study, the side resistance for six drilled shafts embedded in that region was evaluated based on the results of bi-directional and static axial compressive pile load tests. Subsequently, these results were compared with the side resistance calculated using domestic and foreign design codes such as FHWA (1999), KDS (2021), and AIJ (2004). Based on the test results, the evaluated side resistances ranged from 120 to 444kPa. However, the estimated values obtained from the design codes ranged from 69.3 to 170kPa, which were less than 50% of the evaluated values. It was observed that the empirical methods and correlations used in design codes provide a conservative estimation of the side resistance for drilled shafts embedded in sand and gravel layers. It implies that a suitable domestic approach should be developed to accurately estimate the side resistance of pile in sandy gravel and gravel layers near the Nakdong river estuary.

Wireless Bridge Health Monitoring System for Long-term Measurement of Small-sized Bridges (중소교량의 지리적 특성을 고려한 무선 전력 및 통신 기술 기반 교량 장기 계측시스템 구축 방안 연구)

  • Tae-Ho Kwon;Kyu-San Jung;Ki-Tae Park;Byeong-Cheol Kim;Jae-Hwan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.86-93
    • /
    • 2023
  • A bridge health monitoring technology is under development for the safety management of aged bridges. The bridge health monitoring technology has been developed mainly for single bridge management at a large scale, so it uses wire-based systems for power supply and data transfer. However, the wire-based systems need to be improved for the sporadically distributed small-sized bridges on local roads. This study proposed a wireless structural health monitoring system for small-sized bridges. The proposed monitoring system overcomes the limitations of wired systems by providing wireless power through solar power and utilizing LTE technology to transmit measurement data. In addition, a remote control system and power management plan were proposed to ensure the stability of the bridge measurement system. The proposed measurement system was installed on 32 bridges on fields and verified the operability by collecting 80.6% of measurement data for one year. The proposed system can support the health monitoring of aged bridges on local roads.

A Study on the Accuracy Comparison of Object Detection Algorithms for 360° Camera Images for BIM Model Utilization (BIM 모델 활용을 위한 360° 카메라 이미지의 객체 탐지 알고리즘 정확성 비교 연구)

  • Hyun-Chul Joo;Ju-Hyeong Lee;Jong-Won Lim;Jae-Hee Lee;Leen-Seok Kang
    • Land and Housing Review
    • /
    • v.14 no.3
    • /
    • pp.145-155
    • /
    • 2023
  • Recently, with the widespread adoption of Building Information Modeling (BIM) technology in the construction industry, various object detection algorithms have been used to verify errors between 3D models and actual construction elements. Since the characteristics of objects vary depending on the type of construction facility, such as buildings, bridges, and tunnels, appropriate methods for object detection technology need to be employed. Additionally, for object detection, initial object images are required, and to obtain these, various methods, such as drones and smartphones, can be used for image acquisition. The study uses a 360° camera optimized for internal tunnel imaging to capture initial images of the tunnel structures of railway and road facilities. Various object detection methodologies including the YOLO, SSD, and R-CNN algorithms are applied to detect actual objects from the captured images. And the Faster R-CNN algorithm had a higher recognition rate and mAP value than the SSD and YOLO v5 algorithms, and the difference between the minimum and maximum values of the recognition rates was small, showing equal detection ability. Considering the increasing adoption of BIM in current railway and road construction projects, this research highlights the potential utilization of 360° cameras and object detection methodologies for tunnel facility sections, aiming to expand their application in maintenance.