최근 건설현장의 안전사고 문제를 해결하기 위해 컴퓨터 비전 기술을 활용한 안전관리에 관한 연구를 많이 수행하고 있다. 최근 딥러닝 기반 객체 인식 및 영역 분할 연구에서 앵커 박스 파라미터를 사용하고 있다. 일관적인 정확도를 확보하기 위하여 학습 과정에서 앵커 박스 파라미터의 최적화가 중요하다. 앵커 박스 관련 파라미터는 일반적으로 학습자의 휴리스틱 방법으로 모양과 크기를 고정하여 학습을 수행하고 있고, 파라미터는 단일로 구성된다. 하지만 파라미터는 객체 종류와 객체 크기에 따라 민감하고 수가 증가하면 단일 파라미터로 데이터의 모든 특성을 반영하는데 한계가 발생한다. 따라서 본 논문은 분할 학습을 통해 최적화된 다중 파라미터를 적용하는 방법을 제안하여 단일 파라미터로 모든 객체의 특성을 반영하기 어려운 문제를 해결하고자 한다. 통합 데이터를 객체 크기, 객체 수, 객체의 형상에 따라 효율적으로 분할하는 기준을 정립하였으며, 최종으로 통합 학습과 분할 학습 방법의 성능 비교를 통해 제안한 학습 방법의 효과를 검증하였다.
항공 레이저 스캐너(ALS)로부터 획득한 라이다(LiDAR) 데이터는 지형지물을 모델링하기 위해서 널리 사용되고 있으며, 특히 정밀 3차원 건축물 및 도시모델, 엄밀정사영상 등 고품질의 공간정보를 효율적으로 구축하기 위하여 라이다 데이터를 이용한 3차원 모델링에 관한 연구가 지속적으로 수행되고 있다. 불규칙적으로 분포된 고밀도의 라이다 데이터로부터 객체를 3차원으로 모델링하기 위해서는 시스템 캘리브레이션, 노이즈 제거 및 지면과 객체를 분리하기 위한 필터링, 객체의 종류 및 특성에 따른 데이터 분류, 기하학적 특성 및 동질성에 기반한 데이터 분할, 분할면의 군집화 및 묘사, 분할면의 재구성과 조합에 의한 모델링, 품질검사 등 일련의 복잡한 과정들이 수반된다. 라이다 데이터를 이용한 많은 모델링 방법들은 데이터 분할 과정을 포함하고 있지만, 본 논문에서는 라이다 데이터를 분할하지 않고 객체를 구성하는 중요하고 대표적인 특징점들을 추출하여 건물 모델링에 활용하는 방법을 제안하고 있다. 복잡하고 다양한 건물 형태를 시뮬레이션한 데이터와 실제 데이터에 적용하여 제안한 방법의 타당성 및 정확도를 검증하였다.
도심지역의 교통 상태는 효과적인 교통 운영과 교통 제어를 수행하는 데 필수 요소이다. 하지만 교통 상태를 얻기 위해서 수많은 도로 구간에 교통 센서를 설치하는 것은 막대한 비용이 든다. 이를 해결하기 위해서 시장침투율이 높은 센서인 차량 블랙박스 카메라를 이용하여 교통 상태를 추정하는 것이 효과적이다. 하지만 기존의 방법론은 객체 추적 알고리즘이나 광학 흐름과 같이 계산 복잡도가 높고, 연속된 프레임이 있어야 연산을 수행할 수 있다는 단점이 존재한다. 이에 본 연구에서는 심층학습 모델로 차량과 차선을 탐지하고, 차선 사이의 공간을 관심 영역으로 설정하여 해당 영역의 교통밀도를 추정하는 방법을 제안하였다. 이 방법론은 객체 탐지 모델만을 이용해서 연산량이 적고, 연속된 프레임이 아닌 샘플링된 프레임에 대해 교통 상태를 추정할 수 있다는 장점이 있기에, 보유하고 있는 컴퓨팅 자원에 맞는 교통 상태 추정이 가능하다. 또, 도심지역에서 운행하는 서로 다른 특성의 2개의 버스 노선에서 수집한 블랙박스 영상을 검증한 결과, 교통밀도 추정 정확도가 90% 이상인 것을 확인하였다.
도로 관리 주체는 도로 파손을 보수하기 위해 적지 않은 비용을 투입한다. 이러한 파손은 자연 요인과 노후화로 인하여 필연적으로 발생을 하는데, 효율적인 보수를 위한 유지보수 기술이 필요하다. 이런 수요에 대응하기 위해 여러 가지 기술들이 개발되고 적용되고 있지만, 최근 들어서는 차량용 블랙박스 형태로 수집한 영상 정보를 바탕으로 도로 노면 파손 유지 보수기술이 개발되고 있다. 이 파손 영역을 추출하는 방법에는 여러 가지가 있지만, 본 논문에서는 최근 활발히 연구되고 있는 심층 신경망 구조의 영상인식 기술에 대해 논하고자 한다. 특히 영역 기반의 합성곱 알고리즘을 이용하여 영상 내에서 도로 파손 유무와 그 영역을 추정할 수 있는 새로운 심층 신경망을 소개한다. 이를 개발하기 위해 실제 주행을 통해서 600여장의 영상 데이터를 수집하였고, 이를 활용하여 학습을 수행하였다. 그 결과 기존 모델과 성능을 비교하여 10.67% 향상된 신경망을 개발하였다.
본 논문에서는 2016년을 기준으로 강화된 터널 방재시설 설치 및 관리지침과, 점차 강화되고 있는 터널 CCTV설치 터널등급 기준과 터널 영상유고감지 시스템의 설치 운용에 대한 요구의 증가 상황을 정리해 보고하였다. 그럼에도, 가동중인 알고리즘 기반의 터널 영상유고감시 시스템의 정상 인지율은 50%가 채 되지 않는 것으로 파악되었으며, 그에 대한 주원인은 터널 내 낮은 조도, 심한 먼지로 인한 영상 선명도 저하, 낮은 CCTV 설치위치로 인한 이동객체의 겹침현상 등으로 파악되었다. 따라서, 본 연구에서는 이러한 열악한 조건에서도 영상유고 정상 인지율을 확보할 수 있는 딥러닝 기반 영상유고감지 시스템을 개발하였으며, 이에 대한 이론적 배경 제시와 시스템의 타당성 검토 연구가 진행되었다. 개발 시스템의 타당성 검토 연구는 터널 방재시설 및 관리지침 내 영상유고감지 항목중 정지 및 역주행 차량을 감지하는 주요 정보인 차량 객체 인식과 보행자 감지를 중심으로 진행되었다. 또한, (1) 동일 터널 내에서 학습과 추론이 이루어 지는 경우와 (2) 다양한 터널의 영상 정보를 통합 학습하고, 각 터널의 영상유고감지에 투입되는 경우, 두개의 시나리오를 설정하여 타당성 검토를 진행하였다. 두 시나리오 모두 일정 시간의 학습 자료와 유사한 상황에 대해서는 열악한 터널환경과 무관하게 그 감지성능이 80% 이상으로 우수하나, 추가 학습 없이 학습된 시간 구간과 멀어질수록 그 추론 성능은 상대적으로 낮은 40% 수준으로 떨어짐을 알 수 있었다. 그러나, 시간이 지남에 따라 자동으로 누적되어 확장되는 영상유고 빅데이터를 반복적으로 학습함으로써, 설치된 영상유고감지 시스템의 보완이나 보정절차 없이도 자동으로 그 영상유고감지 성능이 향상될 수 있음을 보였다.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.275-279
/
2002
Change Detection is a useful technology that can be applied to various fields, taking temporal change information with the comparison and analysis among multi-temporal satellite images. Especially, Change Detection that utilizes high-resolution satellite imagery can be implemented to extract useful change information for many purposes, such as the environmental inspection, the circumstantial analysis of disaster damage, the inspection of illegal building, and the military use, which cannot be achieved by low- or middle-resolution satellite imagery. However, because of the special characteristics that result from high-resolution satellite imagery, it cannot use a pixel-based method that is used for low-resolution satellite imagery. Therefore, it must be used a feature-based algorithm based on the geographical and morphological feature. This paper presents the system that builds the change map by digitizing the boundary of the changed object. In this system, we can make the change map using manual or semi-automatic digitizing through the user interface implemented with a floating window that enables to detect the sign of the change, such as the construction or dismantlement, more efficiently.
본 연구에서는 비지도 이상 탐지 방법을 변형한 U-Net 기반의 이미지 복원 기법을 통해 한정적인 데이터를 활용한 균열 탐지 방안을 제안한다. 콘크리트 균열은 다양한 원인으로 인해 발생하며, 장기적으로 구조물의 심각한 손상을 초래할 수 있는 요소이다. 일반적으로 균열 조사는 검사원의 육안으로 판단하는 외관 검사법을 사용하는데, 이는 판단에 객관성이 떨어지며 인적 오류 발생 가능성이 크다. 따라서 객관적이고 정확한 이미지 분석 처리를 통한 방법이 요구된다. 최근에는 균열을 신속하고 정밀하게 탐지할 수 있도록 딥러닝을 활용한 기술들이 연구되고 있다. 하지만 일반적인 균열자료에 비해 점검 대상물에 대한 데이터는 한정적이므로 이를 활용한 기존 균열 탐지 모델의 성능은 제한적인 경우가 많다. 따라서 본 연구에서는 비지도 이상 탐지 방법을 사용해 점검 대상물에 대한 데이터를 증강하여 해당 데이터를 사용하여 학습한 결과, 정확도 98.78%, 조화평균(F1_Score) 82.67%의 성능을 확인하였다.
고해상도 위성영상 시계열 데이터 확보가 쉬워져 이를 활용한 변화탐지 연구가 활발히 이뤄지고 있다. 위성영상 화소 및 객체 단위 변화탐지 알고리즘 뿐만 아니라, 최근 딥러닝 기술을 적용한 알고리즘 등 다양한 방안이 연구되고 있다. 이런 유용한 결과의 활용도를 높이기 위한 QGIS 플러그인 기반 시스템 구축 방안을 제시하고 실 구축 사례를 제시한다. 제안한 시스템은 관심지역에 대한 집중적인 변화탐지 모니터링을 위한 시스템이며, 향후 개발할 알고리즘의 편리한 시스템 확장 방안을 제시한다. 더 나아가 변화탐지 연구결과 현업화의 기본 구조를 제시하여 위성영상 활용 시스템 구축에 기여할 것으로 기대한다.
국내 200 m 이상 연장의 터널에서는 CCTV 설치가 의무화되어 있으며, 터널 내 돌발 상황을 자동으로 인지한 다음 터널 관리자에게 알릴 수 있는 터널 영상유고시스템의 운영이 권고된다. 여기서 터널 내 설치된 CCTV는 터널 구조물의 공간적인 한계로 인해 낮은 높이로 설치된다. 이에 따라 이동차량과 매우 인접하므로, 이동차량과 CCTV와의 거리에 따른 원근현상이 매우 심하다. 이로 인해, 기존 터널 영상유고시스템은 터널 CCTV로부터 멀리 떨어질수록 차량의 정차 및 역주행, 보행자 출현 및 화재 발생과 같은 터널 내 유고상황을 인지하기 매우 어려우며, 100 m 이상의 거리에서는 높은 유고상황 인지 성능을 기대하기 어려운 것으로 알려져 있다. 이 문제를 해결하기 위해 관심영역 설정 및 역 원근변환(Inverse perspective transform)을 도입하였으며, 이 과정을 통해 얻은 변환영상은 먼 거리에 있는 객체의 크기가 확대된다. 이에 따라 거리에 따라 객체의 크기가 비교적 일정하게 유지되므로, 거리에 따른 객체 인식 성능과 영상에서 보이는 차량의 이동속도 또한 일관성을 유지할 수 있다. 이를 증명하기 위해 본 논문에서는 터널 CCTV의 원본영상과 변환영상을 바탕으로 동일한 조건을 가지는 데이터셋을 각각 제작 및 구성하였으며, 영상 내 차량의 실제 위치의 변화에 따른 겉보기 속도와 객체 크기를 비교하였다. 그 다음 딥러닝 객체인식 모델의 학습 및 추론을 통해 각 영상 데이터셋에 대한 거리에 따른 객체인식 성능을 비교하였다. 결과적으로 변환영상을 사용한 모델은 200 m 이상의 거리에서도 객체인식 성능과 이동차량의 유고상황 인지 성능을 확보할 수 있음을 보였다.
In this paper, we present Emergency exit signs are installed to provide escape routes or ways in buildings like shopping malls, hospitals, industry, and government complex, etc. and various other places for safety purpose to aid people to escape easily during emergency situations. In case of an emergency situation like smoke, fire, bad lightings and crowded stamped condition at emergency situations, it's difficult for people to recognize the emergency exit signs and emergency doors to exit from the emergency building areas. This paper propose an automatic emergency exit sing recognition to find exit direction using a smart device. The proposed approach aims to develop an computer vision based smart phone application to detect emergency exit signs using the smart device camera and guide the direction to escape in the visible and audible output format. In this research, a CAMShift object tracking approach is used to detect the emergency exit sign and the direction information extracted using template matching method. The direction information of the exit sign is stored in a text format and then using text-to-speech the text synthesized to audible acoustic signal. The synthesized acoustic signal render on smart device speaker as an escape guide information to the user. This research result is analyzed and concluded from the views of visual elements selecting, EXIT appearance design and EXIT's placement in the building, which is very valuable and can be commonly referred in wayfinder system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.