• Title/Summary/Keyword: Building Object

Search Result 889, Processing Time 0.031 seconds

The Effect of Background on Object Recognition of Vision AI (비전 AI의 객체 인식에 배경이 미치는 영향)

  • Wang, In-Gook;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.127-128
    • /
    • 2023
  • The construction industry is increasingly adopting vision AI technologies to improve efficiency and safety management. However, the complex and dynamic nature of construction sites can pose challenges to the accuracy of vision AI models trained on datasets that do not consider the background. This study investigates the effect of background on object recognition for vision AI in construction sites by constructing a learning dataset and a test dataset with varying backgrounds. Frame scaffolding was chosen as the object of recognition due to its wide use, potential safety hazards, and difficulty in recognition. The experimental results showed that considering the background during model training significantly improved the accuracy of object recognition.

  • PDF

Integrated Object Detection and Blockchain Framework for Remote Safety Inspection at Construction Sites

  • Kim, Dohyeong;Yang, Jaehun;Anjum, Sharjeel;Lee, Dongmin;Pyeon, Jae-ho;Park, Chansik;Lee, Doyeop
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.136-144
    • /
    • 2022
  • Construction sites are characterized by dangerous situations and environments that cause fatal accidents. Potential risk detection needs to be improved by continuously monitoring site conditions. However, the current labor-intensive inspection practice has many limitations in monitoring dangerous conditions at construction sites. Computer vision technology that can quickly analyze and collect site conditions from images has been in the spotlight as a solution. Nonetheless, inspection results obtained via computer vision are still stored and managed in centralized systems vulnerable to tampering with information by the central node. Blockchain has been used as a reliable and efficient decentralized information management system. Despite its potential, only limited research has been conducted integrating computer vision and blockchain. Therefore, to solve the current safety management problems, the authors propose a framework for construction site inspection that integrates object detection and blockchain network, enabling efficient and reliable remote inspection. Object detection is applied to enable the automatic analysis of site safety conditions. As a result, the workload of safety managers can be reduced with inspection results stored and distributed reliably through the blockchain network. In addition, errors or forgery in the inspection process can be automatically prevented and verified through a smart contract. As site safety conditions are reliably shared with project participants, project participants can remotely inspect site conditions and make safety-related decisions in trust.

  • PDF

A Study on Object Detection in Region-of-Interest Algorithm using Adjacent Frames based Image Correction Algorithm for Interactive Building Signage

  • Lee, Jonghyeok;Choi, Jinyeong;Cha, Jaesang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.74-78
    • /
    • 2018
  • Recently, due to decrease hardware prices and the development of technology, analog signage has been changing to digital signage for providing content such as advertisements, videos. Furthermore, in order to provide advertisements and contents to users more effectively, technical researches are being conducted in various industries. In addition, including digital signage that uses displays, it can be seen that it provides advertisements and contents using diverse devices such as LED signage, smart pads, and smart phones. However, most digital signage is installed in one place to provide contents and provides interactivity through simple events such as manual content provision or touch. So, in this paper, we suggest a new object detection algorithm based on an adjacent frames based image correction algorithm for interactive building signage.

Research on Digital Construction Site Management Using Drone and Vision Processing Technology (드론 및 비전 프로세싱 기술을 활용한 디지털 건설현장 관리에 대한 연구)

  • Seo, Min Jo;Park, Kyung Kyu;Lee, Seung Been;Kim, Si Uk;Choi, Won Jun;Kim, Chee Kyeung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.239-240
    • /
    • 2023
  • Construction site management involves overseeing tasks from the construction phase to the maintenance stage, and digitalization of construction sites is necessary for digital construction site management. In this study, we aim to conduct research on object recognition at construction sites using drones. Images of construction sites captured by drones are reconstructed into BIM (Building Information Modeling) models, and objects are recognized after partially rendering the models using artificial intelligence. For the photorealistic rendering of the BIM models, both traditional filtering techniques and the generative adversarial network (GAN) model were used, while the YOLO (You Only Look Once) model was employed for object recognition. This study is expected to provide insights into the research direction of digital construction site management and help assess the potential and future value of introducing artificial intelligence in the construction industry.

  • PDF

Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images (태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지)

  • Jung, Sejung;Park, Jueon;Lee, Won Hee;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.989-1006
    • /
    • 2020
  • Building change monitoring based on building detection is one of the most important fields in terms of monitoring artificial structures using high-resolution multi-temporal images such as CAS500-1 and 2, which are scheduled to be launched. However, not only the various shapes and sizes of buildings located on the surface of the Earth, but also the shadows or trees around them make it difficult to detect the buildings accurately. Also, a large number of misdetection are caused by relief displacement according to the azimuth and elevation angles of the platform. In this study, object-based building detection was performed using the azimuth angle of the Sun and the corresponding main direction of shadows to improve the results of building change detection. After that, the platform's azimuth and elevation angles were used to detect changed buildings. The object-based segmentation was performed on a high-resolution imagery, and then shadow objects were classified through the shadow intensity, and feature information such as rectangular fit, Gray-Level Co-occurrence Matrix (GLCM) homogeneity and area of each object were calculated for building candidate detection. Then, the final buildings were detected using the direction and distance relationship between the center of building candidate object and its shadow according to the azimuth angle of the Sun. A total of three methods were proposed for the building change detection between building objects detected in each image: simple overlay between objects, comparison of the object sizes according to the elevation angle of the platform, and consideration of direction between objects according to the azimuth angle of the platform. In this study, residential area was selected as study area using high-resolution imagery acquired from KOMPSAT-3 and Unmanned Aerial Vehicle (UAV). Experimental results have shown that F1-scores of building detection results detected using feature information were 0.488 and 0.696 respectively in KOMPSAT-3 image and UAV image, whereas F1-scores of building detection results considering shadows were 0.876 and 0.867, respectively, indicating that the accuracy of building detection method considering shadows is higher. Also among the three proposed building change detection methods, the F1-score of the consideration of direction between objects according to the azimuth angles was the highest at 0.891.

A Study on the Model Development for Production of Interior Drawings and estimation of Quantities (실내도면 작성과 물량산출을 위한 모델 개발에 관한 연구)

  • 정례화;이승우;추승연
    • Korean Institute of Interior Design Journal
    • /
    • no.19
    • /
    • pp.30-37
    • /
    • 1999
  • This study presents a methods on the construction of integrated system for the purpose of automation of design plans, calculation of quantity of materials and estimation by abstracting information on building materials which is produced on the course of three dimension modeling by using computer. Therefore, an object oriented methodology is introduced to compose design informations in three dimension, space for unifying building informations, and expressing properties of building factors and materials, and to construct a database for computers to recognize architecture informations. An object indicates a conceptual individual existing in real world or existence of individual and necessity in composing a building could be called as objects such as column, wall, beam, slab, door and window and these contain materiality and immateriality. It is systemized to which properties of these building's objects are installed by the user of computer and by API(Application Programming Interface), chosen informations automatically converse to each unit work such as design plan structure plan, calculation of amount of materials, etc.

  • PDF

A Study to investigate architectural environment caused by the location of an Elementary school - On the basis of district of building site development in Busan city - (초등학교(初等學敎) 입지(立地)에 따른 건축적(建築的) 환경(環境) 조사연구(調査硏究) - 부산시내 택지개발지구를 중심으로 -)

  • Shon, Yoon-Deuk;Lyou, Jong-Woo
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.12 no.1
    • /
    • pp.41-53
    • /
    • 2005
  • The purpose of this study is to suggest the reference materials in the selection of location of elementary school at the planning of building site development by analyzing the environment of architecture in the district of building site development. The method of investigation adapted the site investigation and drawing analysis of the elementary school, after collecting materials of the district of building site development within Busan city, under the object of investigation including 17 elementary schools within 15 districts of building site development and the object of investigation.

Study on Building Data Set Matching Considering Position Error (위치 오차를 고려한 건물 데이터 셋의 매칭에 관한 연구)

  • Kim, Ki-Rak;Huh, Yong;Yu, Ki-Yun
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.37-46
    • /
    • 2011
  • Recently in the field of GIS(Geographic Information System), data integration from various sources has become an important topic in order to use spatial data effectively. In general, the integration of spatial data is accomplished by navigating corresponding space object and combining the information interacting with each object. But it is very difficult to navigate an object which has correspondence with one in another dataset. Many matching methods have been studied for navigating spatial object. The purpose of this paper is development of method for searching correspondent spatial object considering local position error which is remained even after coordinate transform ation when two different building data sets integrated. To achieve this goal, we performed coordinate transformation and overlapped two data sets and generated blocks which have similar position error. We matched building objects within each block using similarity and ICP algorithm. Finally, we tested this method in the aspect of applicability.

Analysis of Building Object Detection Based on the YOLO Neural Network Using UAV Images (YOLO 신경망 기반의 UAV 영상을 이용한 건물 객체 탐지 분석)

  • Kim, June Seok;Hong, Il Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.381-392
    • /
    • 2021
  • In this study, we perform deep learning-based object detection analysis on eight types of buildings defined by the digital map topography standard code, leveraging images taken with UAV (Unmanned Aerial Vehicle). Image labeling was done for 509 images taken by UAVs and the YOLO (You Only Look Once) v5 model was applied to proceed with learning and inference. For experiments and analysis, data were analyzed by applying an open source-based analysis platform and algorithm, and as a result of the analysis, building objects were detected with a prediction probability of 88% to 98%. In addition, the learning method and model construction method necessary for the high accuracy of building object detection in the process of constructing and repetitive learning of training data were analyzed, and a method of applying the learned model to other images was sought. Through this study, a model in which high-efficiency deep neural networks and spatial information data are fused will be proposed, and the fusion of spatial information data and deep learning technology will provide a lot of help in improving the efficiency, analysis and prediction of spatial information data construction in the future.

Building Information-rich Maps for Intuitive Human Interface Using Networked Knowledge Base

  • Ryu, Jae-Kwan;Kanayama, Chie;Chong, Nak-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1887-1891
    • /
    • 2005
  • Despite significant advances in multimedia transferring technologies in various fields of robotics, it is sometimes quite difficult for the operator to fully understand the context of 3D remote environments from 2D image feedback. Particularly, in the remote control of mobile robots, the recognition of the object associated with the task is very important, because the operator has to control the robot safely in various situations not through trial and error. Therefore, it is necessary to provide the operator with 3D volumetric models of the object and object-related information as well such as locations, shape, size, material properties, and so on. Thus, in this paper, we propose a vision-based human interface system that provides an interactive, information-rich map through network-based information brokering. The system consists of an object recognition part, a 3D map building part, a networked knowledge base part, and a control part of the mobile robot.

  • PDF