• 제목/요약/키워드: Building Energy Simulation

검색결과 684건 처리시간 0.033초

진공 및 이산화탄소 삼중유리 시스템의 최적 두께 및 열관류율 분석 (Analysis of the Optimal Thickness and the Heat Transmission for the Triple Glazing System with Vacuum and Carbon Dioxide Gaps)

  • 백상훈
    • 토지주택연구
    • /
    • 제11권3호
    • /
    • pp.61-68
    • /
    • 2020
  • Advanced glazing systems with excellent heat transmission values (Ug-Value) have been developed to reduce the energy consumption and the greenhouse gas emission. This study proposes a triple glazing system consisting of gaps with a vacuum and a carbon dioxide gas layer which is one of greenhouse gases. As a fundamental stage, this study is focused on calculating the optimal glazing thickness and the Ug-Value via a computer simulation, Therm & Window package. As the results, it was presented that the optimal thickness of the proposed triple glazing system is 22.2 mm, and the Ug-Value is 0.273 W/㎡·K. If this glazing system is to be applied to buildings, it could not only reduce building energy consumption but could also contribute to the treatment of carbon dioxide gas which is one of greenhouse gases.

분산전원 상세모델을 적용한 DC Micro-grid의 동작특성 분석 (Operational Characteristic Analysis of DC Micro-grid with Detail Model of Distributed Generation)

  • 이지헌;권기현;한병문;차한주
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2175-2184
    • /
    • 2009
  • This paper describes operational analysis results of the DC micro-grid using detailed model of distributed generation. Detailed model of wind power generation, photo-voltaic generation, fuel-cell generation was implemented with the user-defined model of PSCAD/EMTDC software that is coded with C-language. The operation analysis was carried out using PSCAD/EMTDC software, in which the power circuit is implemented by built-in model and the controller is modelled by user-defined model that is also coded with C-language. Various simulation results confirm that the DC micro-grid can operate without any problem in both the interconnected mode and the islanded mode. The operation analysis result confirms that the DC micro-grid make it feasible to provide power to the load stably. And it can be utilize to develop the actual system design and building.

실대실험에 의한 에어베리어형 페리미터레스 공조시스템의 실내 열환경 평가 (Evaluation of Thermal Environment through Large-scale Model Experiment on Air-barrier Type Perimeter-less System)

  • 김용경;이정재
    • 설비공학논문집
    • /
    • 제15권11호
    • /
    • pp.970-978
    • /
    • 2003
  • This paper aims at suggesting design guidelines for a perimeter-less HVAC system that contributes energy savings. Perimeter-less HVAC system is one that relieves difficulties such as handling mixing loss, uneven radiative environment, and maintenance and repair. It prevents heat load gained through window and outdoor wall without modifying a previously equipped building skin system. In this paper, we conducted a large-scale model experiment to see how the push-pull air flow would handle indoor heat to obtain an optimized perimeter-less design, and then we plan to perform several kinds of CFD (computational fluid dynamics) cases through numerical simulation

집광채광시스템을 적용한 실내체육관의 신재생에너지 공급의무 분담률에 관한 연구 (A Study on the Supply obligations allotment rate of New Renewable Energy in Indoor Gymnasiums with the Application of a Daylighting System)

  • 박윤하;이용호;조영흠;황정하
    • 한국태양에너지학회 논문집
    • /
    • 제35권3호
    • /
    • pp.27-39
    • /
    • 2015
  • Under the goal of analyzing the compulsory supply share of new renewable energy according to the application of a daylighting system to indoor gymnasiums, this study conducted analysis of energy consumption and operation schedule at three indoor gymnasiums in the nation through a survey. The investigator did an Energy Plus simulation on Building A based on the analysis results and analyzed the supply share of new renewable energy in the saving effects of lighting energy according to the application of a daylighting system. As a result, When 92 prism daylighting system were installed in the upper ceiling of a stadium, they were able to meet the criteria for the minimum illumination for official games(Min : 600㏓) and optimum illumination for general games and recreations, thus saving lighting energy during the daytime(09:00~17:00). The resulting saving effects of lighting energy amounted to 44.4% for official games, 57.6% for general games, and 66.7% for recreations. In addition, the daylighting systems had a compulsory supply share of new renewable energy at 2.04% for official games, 2.75% for general games, and 2.62% for recreations, recording an average compulsory supply share of 2.5%.

Shake table responses of an RC low-rise building model strengthened with buckling restrained braces at ground story

  • Lee, Han Seon;Lee, Kyung Bo;Hwang, Kyung Ran;Cho, Chang Seok
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.703-731
    • /
    • 2013
  • In order to verify the applicability of buckling restrained braces (BRB's) and fiber reinforced polymer (FRP) sheets to the seismic strengthening of a low-rise RC building having the irregularities of a soft/weak story and torsion at the ground story, a series of earthquake simulation tests were conducted on a 1:5 scale RC building model before, and after, the strengthening, and these test results are compared and analyzed, to check the effectiveness of the strengthening. Based on the investigations, the following conclusions are made: (1) The BRB's revealed significant slips at the joint with the existing RC beam, up-lifts of columns from RC foundations and displacements due to the flexibility of foundations, and final failure due to the buckling and fracture of base joint angles. The lateral stiffness appeared to be, thereby, as low as one seventh of the intended value, which led to a large yield displacement and, therefore, the BRB's could not dissipate seismic input energy as desired within the range of anticipated displacements. (2) Although the strengthened model did not behave as desired, great enhancement in earthquake resistance was achieved through an approximate 50% increase in the lateral resistance of the wall, due to the axial constraint by the peripheral BRB frames. Finally, (3) whereas in the original model, base torsion was resisted by both the inner core walls and the peripheral frames, the strengthened model resisted most of the base torsion with the peripheral frames, after yielding of the inner core walls, and represented dual values of torsion stiffness, depending on the yielding of core walls.

점진적 샘플링과 정규 상호정보량을 이용한 온라인 기계학습 공조기 급기온도 예측 모델 개발 (Development of Online Machine Learning Model for AHU Supply Air Temperature Prediction using Progressive Sampling and Normalized Mutual Information)

  • 추한경;신한솔;안기언;라선중;박철수
    • 대한건축학회논문집:구조계
    • /
    • 제34권6호
    • /
    • pp.63-69
    • /
    • 2018
  • The machine learning model can capture the dynamics of building systems with less inputs than the first principle based simulation model. The training data for developing a machine learning model are usually selected in a heuristic manner. In this study, the authors developed a machine learning model which can describe supply air temperature from an AHU in a real office building. For rational reduction of the training data, the progressive sampling method was used. It is found that even though the progressive sampling requires far less training data (n=60) than the offline regular sampling (n=1,799), the MBEs of both models are similar (2.6% vs. 5.4%). In addition, for the update of the machine learning model, the normalized mutual information (NMI) was applied. If the NMI between the simulation output and the measured data is less than 0.2, the model has to be updated. By the use of the NMI, the model can perform better prediction ($5.4%{\rightarrow}1.3%$).

설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012)

  • 한화택;이대영;김사량;김현정;최종민;박준석;김수민
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

연도별 기상데이터를 활용한 건물의 냉.난방부하 특성 비교 (Comparative Studies on Heating and Cooling Loads' of a Building Varied by Annual Weather Data)

  • 이지훈;황광일
    • 한국항해항만학회지
    • /
    • 제35권3호
    • /
    • pp.265-270
    • /
    • 2011
  • 본 연구는 건물에너지 효율 향상을 위한 목적으로 기상데이터 변화에 따른 건물 냉 난방부하량을 예측하고 결과를 비교 분석한 것으로, 연구 성과는 다음과 같다. 1)기상청에서 입수데이터를 평가툴인 ESP-r에 활용할 수 있도록 항목별 기상데이터를 개발하였다. 표준기상 데이터의 외기온도, 습도, 풍속은 대부분의 경우 기상청데이터 보다 크거나 높았다. 수평면전일사량은 기상청데이터가 높았고, 직달일사량은 겨울철에는 표준기상데이터가, 여름철에는 기상청데이터가 많은 것으로 나타났다. 2)대학교 캠퍼스 내에 신축된 후생복지관을 대상으로 한 시뮬레이션 결과, 최대난방부하의 경우 표준년도, 2006년, 2009년이 비슷한 반면 2007년은 표준년도 대비 81%, 2008년은 96% 수준이었고, 연간난방부하는 2006년, 2008년의 순으로 난방수요가 많았다. 한편, 냉방부하의 경우에는, 상대적으로 최대냉방부하가 큰 2007년, 2009년의 연간 냉방부하보다 최대냉방부하가 가장 적은 2008년의 연간냉방부하가 더 큰 결과를 보였다. 3)냉 난방기기의 상당시간가동률을 평가한 결과, 표준년도의 최대부하대비 상당시간가동률은 2006~2009년이 표준년도에 비해 대부분 가동률이 낮았다.

중앙냉방시스템의 외기온도조건을 고려한 나이트 퍼지 제어방안에 관한 연구 (Night Purge Control Strategies With Outdoor Air Temperature Conditions for Central Cooling System)

  • 황진원;안병천
    • 한국산학기술학회논문지
    • /
    • 제16권10호
    • /
    • pp.6759-6765
    • /
    • 2015
  • 본 연구에서는 자연외기를 활용하여 건물의 중앙냉방시스템에 대한 에너지를 절약하기 위한 제어방법으로서 외기온도 조건을 고려한 나이트 퍼지제어의 적용방안에 대해 시뮬레이션 연구가 수행되었다. 외기온도의 변화특성 및 건물의 축냉성능 등이 고려되었으며, 나이트 퍼지제어를 위한 운전시작시간과 제어설정온도의 선정방안이 연구되었다. 본 연구를 위하여 TRNSYS 프로그램을 활용하여 시스템 해석 모델링을 수행하였으며, 기존 제어방식 대비 제안된 제어방법의 에너지 절약성능을 비교 분석하였다. 연구결과로 외기온도 변화에 따라 나이트 퍼지제어를 위한 운전조건을 선정한 제안된 제어방법이 기존의 나이트 퍼지제어 제어방식과 비교하였을 때는 최대 16.8%, 나이트 퍼지제어를 적용하지 않은 경우에 비해서는 최대 28.6%의 에너지 절감이 가능함을 알 수 있었다.

목질 마감재 구성에 따른 주거용 건축물 부위별 열교 및 전열성능 분석 (Thermal Bridge and Heat Transfer Analysis for Each Part in Residential Building According to Construction of Wood-based Finishing Material)

  • 서정기;정수광;김수민
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권3호
    • /
    • pp.343-359
    • /
    • 2017
  • 건축물에서 사용되는 에너지를 줄이기 위하여 다양한 연구 및 정책이 진행되고 있으나 건축물에서 구조재 및 실내 외 마감재로 폭넓게 사용되는 목재의 열적 특성에 관한 연구는 미미한 실정이다. 이에 따라, 본 연구는 목질재료와 비 목질재료의 전열성능을 분석하기 위하여 목질재료가 주로 이용되는 주거용 건축물을 대상으로 열성능이 취약한(열교 발생) 부위를 선정하고, 각 부위별로 구조재와 마감재의 구성에 따라 총 16 Case에 대해 전열성능 분석을 실시하였다. 전열 해석 시뮬레이션 도구는 ISO 10211의 계산 방법을 따르는 Physibel Trisco를 이용하였다. 해석 부위의 모델링 역시 ISO 10211에서 제시된 기준에 의해 실시하였으며, 경계 온도 조건은 에너지절약설계기준에 따라 실내온도 $20^{\circ}C$, 실외온도 $-11.3^{\circ}C$(서울 기준)로 설정하였다. 구조는 콘크리트구조와 비 목질재료마감, 콘크리트구조와 목질재료마감 그리고 목구조에 목질재료마감의 경우에 따라 구분하였다. 부위는 벽체, 지붕, 층간바닥 및 최하층 바닥 등으로 구분하여 시뮬레이션을 진행하였다. 결과로서, 콘크리트구조의 경우 형상적 원인에 의해, 목구조의 경우 형상적인 원인에 재료적 원인이 더해져 다발적으로 열교가 발생함을 확인할 수 있었다. 추가적으로 콘크리트구조에서는 단열재의 불연속 부위에서 구조적인 열교가 발생하고 목구조에서는 구조적인 열교와 이질재료의 적용 부위에서 재료적 원인에 의한 열교가 발생하는 것을 확인할 수 있었다. 또한 콘크리트 구조에 목질 실내마감재를 적용하였을 경우에는 벽체의 선형 열관류율 값이 감소하는 것을 확인할 수 있었다.