• Title/Summary/Keyword: Building Energy Simulation

Search Result 684, Processing Time 0.032 seconds

Modeling of RC Frame Buildings for Progressive Collapse Analysis

  • Petrone, Floriana;Shan, Li;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • The progressive collapse analysis of reinforced concrete (RC) moment-frame buildings under extreme loads is discussed from the perspective of modeling issues. A threat-independent approach or the alternate path method forms the basis of the simulations wherein the extreme event is modeled via column removal scenarios. Using a prototype RC frame building, issues and considerations in constitutive modeling of materials, options in modeling the structural elements and specification of gravity loads are discussed with the goal of achieving consistent models that can be used in collapse scenarios involving successive loss of load-bearing columns at the lowest level of the building. The role of the floor slabs in mobilizing catenary action and influencing the progressive collapse response is also highlighted. Finally, an energy-based approach for identifying the proximity to collapse of regular multi-story buildings is proposed.

A Feasibility Study on the Wind Power Plant for Common Residential Buildings in Youngdo Island, Busan (부산 영도구 공동주택에 대한 풍력발전 도입가능성)

  • Hwang, Kwang-Il;Kim, Jee-Hun;Shin, Hyoun-Ho;Lee, Su-Ho;Han, Je-Deok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.255-256
    • /
    • 2006
  • A wind power plant is one of the competitive and effective energy among the regulated 13 renewable energies, especially for the seashore and island. This study is focused on the possibility of wind power plant as a on-site electric power supply system for the common residential building in Youngdo, Busan. The following show the results of this study. 26 apartments' monthly electric power consumptions are surveyed and monthly variations are stable comparing to the metropolitan. With the wind speed measured in Youngdo island and wind power plant efficiency data, the simulation is conducted and the result shows that 35 wind power units are satisfied with full electric power load for all the common residential buildings in Youngdo island.

  • PDF

A Novel Photovoltaic Power Generation System including the Function of Shunt Active Filter

  • Park, Minwon;Seong, Nak-Gueon;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.103-110
    • /
    • 2003
  • With significant development of power electronics technology, the proliferation of nonlinear loads such as static power converters has deteriorated power quality in power transmission and distribution systems. Notably, voltage harmonics resulting from current harmonics produced by the nonlinear loads have become a serious problem in many countries. Many photovoltaic power generation systems installed in building systems have harmonics that are the worst object for distribution systems as a utility interactive system, and it tends to spread out continuously. Proposed and implemented in this paper is a multi-function inverter control strategy that allows a shunt active filter function to the power inverter of the photovoltaic power generation system established on a building system. The effectiveness of the proposed system is demonstrated through the simulation of a hypothetical power system using PSCAD/EMTDC.

A Study on the Process Design of Non-Axisymmetric Forging Components (비축대칭 형상의 단조 공정 설계에 관한 연구)

  • Kim, Y.H.;Bae, W.B.;Park, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.57-68
    • /
    • 1995
  • An upper bound elemental technique (UBET) program has been developed to predict forging load, die-cavity filling, preform in non-axisymmetric forging. To analyze the process easily, it is suggested that the deformation is divided into two different parts. Those are axisymmetric part in corner, plane-strain part in lateral. The plane-strain and axisymmetric parts are combined by building block method. And the total energy is computed through combination of three deformation parts. A dumbbell-type preform has been obtained from height and volumetric compensations of the billet based on the backward simulation. Experimetns have been carried out with pure plasticine at room temperature. Theoretical predictions are in good agreement with expereimental results.

  • PDF

A comparison of three multi-objective evolutionary algorithms for optimal building design

  • Hong, Taehoon;Lee, Myeonghwi;Kim, Jimin;Koo, Choongwan;Jeong, Jaemin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.656-657
    • /
    • 2015
  • Recently, Multi-Objective Optimization of design elements is an important issue in building design. Design variables that considering the specificities of the different environments should use the appropriate algorithm on optimization process. The purpose of this study is to compare and analyze the optimal solution using three evolutionary algorithms and energy modeling simulation. This paper consists of three steps: i)Developing three evolutionary algorithm model for optimization of design elements ; ii) Conducting Multi-Objective Optimization based on the developed model ; iii) Conducting comparative analysis of the optimal solution from each of the algorithms. Including Non-dominated Sorted Genetic Algorithm (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO) and Random Search were used for optimization. Each algorithm showed similar range of result data. However, the execution speed of the optimization using the algorithm was shown a difference. NSGA-II showed the fastest execution speed. Moreover, the most optimal solution distribution is derived from NSGA-II.

  • PDF

RETScreen(R) Ground Source Heat Pump(GSHP) Application for Korea (RETScreen(R) 지중열 히트펌프 모듈 한국 적용에 관한 연구)

  • Naveed Ahmed T;Park Sanghyun;Lee Euijoon;Kim Byungseon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.678-683
    • /
    • 2005
  • Korea is utilizing geothermal resources mainly in the bathing and swimming facilities with very few applications for industrial processes or space heating. It is estimated that geothermal capacity and annual utilization are 36.2MWt and 761TJ/year as compared to global capacity and annual utilization of 15,145MWt and 190,699 TJ/year. RETScreen software is a user's friendly tool for analyzing the technical and financial pre-feasibility of potential Renewable Energy (RE) projects that promotes the use of RE applications through the capacity building of planners, decision-makers and industries for successful implementation of RE projects. Strong ties between Canada and Korean organizations such as Korean Solar Energy Society (KSES) and the Korea Institute of Energy Research (KIER) exist for knowledge transfer about RETScreen. In this paper, an overview of RETScreen and its ground source heat pump (GSHP) model with a practical example of an existing project of a community hall in Canada are described to illustrate effectiveness of RETScreenin the implementation of RE technologies. The same community hall project is then evaluated hypothetically considering its location at Kangnyng, Korea. The main objective is to demonstrate how RETScreen GSHP model can also be utilized effectively for GSHP applications in Korea.

  • PDF

EA Study on the Operation Performance of Central Plant Equipment According to Part Load Characteristics (부분부하 특성을 고려한 열원기기의 운전성능 평가)

  • Lee, Wang-Je;Kang, Eun-Chul;Lee, Euy-Joon;Oh, Byung-Chil;Shin, U-Cheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.392-397
    • /
    • 2013
  • To fulfill the demands concerning energy efficiency for zero energy buildings, various technologies of architects and engineers are required. This study aims to estimate the thermal performance of heat source equipment in which part load characteristics are considered in an office building. Overestimation of heat source equipment was reviewed through literature survey, and heating and cooling loads depending on the capacity and division of the equipment were analyzed through a simulation program (DOE-2.1E). The conclusions gained from this study are as follows; 1) The more the division of equipment, the less the heating and cooling energy consumption. 2) When a large item of equipment is divided into two small items of equipment, the optimum application rate showed as 5:5 for chiller, and 7:3 for boiler, respectively.

A Study on the Window Energy Rating Systems in Residential Buildings (주거용 건물의 창호에너지평가시스템에 관한 연구)

  • Kim, Dong-Yun;Lim, Hee-Won;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.16 no.2
    • /
    • pp.33-41
    • /
    • 2016
  • Purpose: The window energy rating system was developed in early 1990's and various kind of rating system has been implemented in advanced country such as Europe, Australia, Canada and the US since 2000. In Korea, the Energy Consumption Efficiency Rating Indication System has been implemented to promote supply of high efficiency window since July 2012. Normally, the window energy rating system based on heat balance which considers both thermal losses and solar heat gain is used and applied only to residential buildings. However, the system used nationally only considers thermal losses and is applied to every building regardless of its usage. Therefore, in this study, we indicated problems of domestic window energy rating system and looked for improvements. Method: We analyzed thermal performance of various windows through dynamic simulation applied to detached house and compared results with those of domestic and foreign rating system. Result : Thermal performance of south windows is more affected by SHGC than U-value, and that of north windows is also affected by SHGC a lot. The difference between the results of our study and current system is statistically significant. As a result, appropriate evaluation criteria which considers solar heat gain is required.

Application of the PSTAR Method to a Thermally Massive Passive Solar House (PSTAR기법을 이용한 자연형 주택의 열 성능 연구)

  • Jeon, Hong-Seok;Chun, Won-Gee
    • Solar Energy
    • /
    • v.11 no.2
    • /
    • pp.3-8
    • /
    • 1991
  • This paper reports the application of the PSTAR(Primary and Secondary Terms Analysis and Henormalization) method to a thermally massive passive solar house located in Daejeon, Korea. The house has approximately $156m^2$ of living area with 3 bedrooms and a living room, which embodies many passive solar features for energy conservation. The primary concern of this work was to properly evaluate the thermal behavior of a thermally massive building structure using the PSTAR method. Results show close agreements between the measured and renormalized values in most cases in which the simulation results from the audit description of the house deviate somewhat considerably.

  • PDF

An ANN-based Intelligent Spectrum Sensing Algorithm for Space-based Satellite Networks

  • Xiujian Yang;Lina Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.980-998
    • /
    • 2023
  • In Low Earth Orbit (LEO) satellite networks, satellites operate fast and the inter-satellite link change period is short. In order to sense the spectrum state in LEO satellite networks in real-time, a space-based satellite network intelligent spectrum sensing algorithm based on artificial neural network (ANN) is proposed, while Geosynchronous Earth Orbit (GEO) satellites are introduced to make fast and effective judgments on the spectrum state of LEO satellites by using their stronger arithmetic power. Firstly, the visibility constraints between LEO satellites and GEO satellites are analyzed to derive the inter-satellite link building matrix and complete the inter-satellite link situational awareness. Secondly, an ANN-based energy detection (ANN-ED) algorithm is proposed based on the traditional energy detection algorithm and artificial neural network. The ANN module is used to determine the spectrum state and optimize the traditional energy detection algorithm. GEO satellites are used to fuse the information sensed by LEO satellites and then give the spectrum decision, thereby realizing the inter-satellite spectrum state sensing. Finally, the sensing quality is evaluated by the analysis of sensing delay and sensing energy consumption. The simulation results show that our proposed algorithm has lower complexity, the sensing delay and sensing energy consumption compared with the traditional energy detection method.