• Title/Summary/Keyword: Building Energy Efficiency

Search Result 753, Processing Time 0.031 seconds

A Study on the Method and Application of Shaft Repair using Directed Energy Deposition Process (직접식 에너지 용착 공정을 활용한 축 보수 방법 및 활용 사례 연구)

  • Lee, Yoon Sun;Lee, Min Kyu;Sung, Ji Hyun;Hong, Myeong Pyo;Son, Yong;An, Seouk;Jeong, Oe Cheol;Lee, Ho Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • Recently, the repair and recycling of damaged mechanical parts via metal additive manufacturing processes have been industrial points of interest. This is because the repair and recycling of damaged mechanical parts can reduce energy and resource consumption. The directed energy deposition(DED) process has various advantages such as the possibility of selective deposition, large building space, and a small heat-affected zone. Hence, it is a suitable process for repairing damaged mechanical parts. The shaft is a core component of various mechanical systems. Although there is a high demand for the repair of the shaft, it is difficult to repair with traditional welding processes because of the thermal deformation problem. The objective of this study is to propose a repair procedure for a damaged shaft using the DED process and discuss its applications. Three types of cases, including a small shaft with a damaged surface, a medium-size shaft with a worn bearing joint, and a large shaft with serious damage, were repaired using the proposed procedure. The microstructure and hardness were examined to discuss the characteristics of the repaired component. The efficiency of the repair of the damaged shaft is also discussed.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.

A Study on the Feasibility of the Timing for the Implementation of Energy-Saving Plan of Buildings Based on the Approval of Business Plan and Construction Permit (건축물에너지절약계획서의 사업계획승인, 건축허가에 따른 적용시점의 타당성 연구)

  • Kim, Dae-Won;Kim, Young-Il;Chung, Kwang-Seop
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.265-270
    • /
    • 2012
  • The delay in the construction permit for the building, which obtained the approval of business proposal, may lead to a difference in the maintenance cost ranging between 20% and 30% in the neighborhood where the residents moved in, along with the new project under construction in the surrounding area amidst rigorous regulations that aim to promote energy-saving and the heightened interest of the public in energy conservation, and such problem would become the major source of serious public complaints. Thus, the energy-saving plan needs to be prepared when the approval is granted to the business plan. In order to prevent public complaints or ensure effectiveness of government's energy plan, it may be effective to apply the energy-saving plan based on current standards upon the award of construction permit when two years have elapsed since the date of the scheduled commencement of construction or when the start of construction is delayed as stipulated in the Article 18 of the Enforcement Decree of Housing Act. If the energy-saving plan and related technologies are merely the parts of license and permit process without fully serving their purposes and functions, it would be waste of time to deploy a lot of workforce and review and seek consultation. The government or owners of buildings need to fully understand the energy-saving aspects and exert effort to enhance the energy efficiency of buildings.

Policy Directions to Build on Nature-Friendly Park Facilities - Based on an Evaluation on the Nature-Friendliness of Park Facilities in National Parks - (자연친화적인 공원시설 설치를 위한 정책방향 - 국립공원 공원시설의 자연친화성 평가를 근거로 -)

  • Park, Chang-Sug;Bae, Min-Ki;Kim, Tae-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.5
    • /
    • pp.1-12
    • /
    • 2009
  • The purpose of this research was to propose policy directions for the design and construction of nature-friendly park facilities (PF) in national parks. In order to do that, nature-friendliness evaluation indicators(NEIs) used in green building rating systems and related articles were reviewed. After the initial literature review was complete, NEIs for park facilities based on location, design, construction, operation, and management sectors were developed. Data was obtained through a questionnaire completed by 79 managers at 19 national parks in Korea in 2008. The answers were analyzed using descriptive statistical methods, a t-test, a multi-dimensional analysis, and a factor analysis. This research found that: 1) The results indicated that based on relative weight calculation, the location condition was evaluated as the most important; 2) The evaluation results regarding the degree of nature-friendliness of park facilities showed that location condition was ranked higher than design and construction--in addition, the evaluated values of indicators related to energy efficiency were ranked the lowest; 3) the level of nature-friendliness of shelter was given the highest level, but resting facility was the lowest level; 4) Overall, park facilities at Mt. Seorak, Mt. Odae, and Taean Coast national parks showed high levels of nature-friendliness. But park facilities at Mt. Gyeongju and Mt. Songni national parks showed low levels of nature-friendliness. The results of this research shall contribute to the establishment of tailor-made management policies, the development of detailed guidelines for increased energy efficiency and visitor satisfaction, and the preservation of ecosystems and natural resources in Korea's national parks.

Study and Survey of Operating Efficiency with Cool Storage System (빙축열냉방시스템의 운전효율에 관한 조사연구)

  • 손학식;심창호;김강현;김재철
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • The purpose of this study is to maintain high efficiency and reasonable use of cool thermal storage systems operated in the domestic building sector. As the result of efficiency test from the five types of operated cool storage systems on the condition that COP ranges are 2.6 to 3.4 during the day time and 2.1 to 3.0 during the night time and it decreased by more than 30% of rated COP given 3.8 to 3.0. The Analysis of cool storage rate shows that only 3 (21.4%) systems out of 15 buildings hold to over 40% capacity for its total capacity. To prevent the decrease in operating efficiency, it should correct the malfunction of 3-way valve and expansion valve and the mistake of control values for schedule program and increase cooling tower capacity. In order to improve piping line, it needs bypass brine line off refrigerator, separation of chilled water line with Ice Slurry system at day and night time and speed control of chilled and warm water pumps. This study does require the more studies on improving difficulty of increasing cooling load with Ice on Coil system, waterproofing with Ice Ball system, COP drop during the night time with Ice Lens, low operating temperature during the day time with Ice Slurry and increasing of Power loss due to hot gas de-icing with Ice Harvest in the future.

Design and Operation of the Rainwater-Greywater Hybrid System : SNU No. 39 Building (빗물-저농도 오수 하이브리드 시스템의 설계 및 운전 평가 : 서울대 39동)

  • Shim, In-tae;Park, Hyun-ju;Kim, Tschung-il;Jung, Sung-un;Han, Moo-young;Namkung, Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.676-682
    • /
    • 2016
  • In this study, rainwater-greywater hybrid system was installed and operated for 1 year in order to evaluate its water quantity, water quality, and economic efficiency in building no. 39. This system was expected to overcome each disadvantages of and maximize each advantages. Low-greywater that was washed up from shower room was treated by MBR (Membrane Bioreactor) and ozone oxidation. Rainwater that was collected from the rooftop was stored in a reservoir, and then transferred to the storage tank that was mixed with treated greywater. After 1 year operating in building no. 39, rainwater and greywater was used to supply $2,599m^3$ of toilet flushing water. In terms of water quality, rainwater was satisfied far the greywater reuse standards except for E.coli. Moreover, low greywater quality was acceptable except for E. coli, BOD, SS, and turbidity. In addition, economic analysis was obtained from benefit-cost ratio (B/C) with 1.11. It implies that the feasibility of the project was reasonable. Furthermore, various research and policy to improve the economic efficiency of water recycling facilities is required to expand the use of water recycling facilities.

A Study on the Effect of Carbon Tax using Second Generation Model for Korea (SGM_Korea 모형을 이용한 탄소세의 이산화탄소 배출저감 효과 분석)

  • Chung, Hyun-Sik;Lee, Sung-Wook
    • Environmental and Resource Economics Review
    • /
    • v.16 no.1
    • /
    • pp.129-169
    • /
    • 2007
  • The purpose of this study is to experiment and simulate the newly-updated Second Generation Model for Korea (SGM-Korea). With the updated model, we tried to simulate effect of carbon tax on $CO_2$ emissions and other macroeconomic variables for Korea. The baseline data are compared with projected profiles by various scenarios to evaluate its performance. Our contribution in this study is to having up-graded the model from its earlier version by building new hybrid input-output table based on 2000 input-output and energy balanced tables. According to our estimation, total $CO_2$ emission in Korea has already increased in 2000 to about 1.86 times the 1990 figure. The level of carbon tax required for the current level of $CO_2$ emission to be reduced to the 1995 or 2000 level seems to be too high for Korean economy to bear. It is possible to find a reasonable level of carbon tax, however, if it can combine it with improvement of energy efficiency at the rate of 0.5% to 1% per year. For Korea to meet its obligation to reduce $CO_2$ emissions, therefore, it is imperative for her to improve energy efficiency as well as to develop alternative energy source reducing its dependence on fossil fuel.

  • PDF

A study on a power plant using Dye-sensitized solar cells in low light environments (저조도 환경에서의 염료감응형 태양전지를 활용한 발전소자에 관한 연구)

  • Kim, Sun-Geum;Baek, Sung-June
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.267-272
    • /
    • 2021
  • Recently, attention has been focused on renewable energy and carbon neutrality to resolve fossil energy depletion and environmental problems. In addition, high-rise urban buildings and an increase in building energy are rapidly increasing. There are many restrictions on installing solar power in urban areas. In addition, as buildings become taller, a lot of low-light environments in which shade is formed occur. Therefore, in this study, we intend to develop a power plant capable of generating electric power in an outdoor low-light environment and indoor lighting environment. The power plant in a low-light environment used a dye-sensitized solar cell. A unit cell and a 20cm×20cm module were manufactured, and the electrical characteristics of the power plant were measured using light sources of LED, halogen lamp, and 3-wavelength lamp. The photoelectric conversion efficiency of the unit cell was 17.2%, 1.28%, 19,2% for each LED, halogen lamp, and 3-wavelength lamp, and the photoelectric conversion efficiency of the 20cm×20cm module was 10.9%, 8.7%, and 11.8%, respectively. In addition, the maximum power value of the module was 13.1mW, 15.7 mW, and 14.2 mW for each light source, respectively, confirming the possibility of power generation in a low-light environment

Synthesis and Characterization of New Dihydroindolo[3,2-b]indole and 5,6-Bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole-Based Polymer for Bulk Heterojunction Polymer Solar Cells

  • Kranthiraja, Kakaraparthi;Gunasekar, Kumarasamy;Song, Myungkwan;Gal, Yeong-Soon;Lee, Jae Wook;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1485-1490
    • /
    • 2014
  • We have designed and developed a new ladder type tetrafused ${\pi}$-conjugated building block such as dihydroindolo[3,2-b]indole (DINI) and investigated its role as an electron rich unit. The photovoltaic properties of a new semiconducting ${\pi}$-conjugated polymer, poly[[5,10-bisoctyl-5,10-dihydroindolo[3,2-b]indole-[5,6- bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole]], represented by PDINI-OBTC8 are described. The new polymer PDINI-OBTC8 was synthesized in donor-acceptor (D-A) fashion, where fused ${\pi}$-conjugated tetracyclic DINI, and 5,6-bis(octyloxy)-4,7-di(thiophen-2-yl) benzo[c][1,2,5]thiadiazole (OBTC8) were employed as electron rich (donor) and electron deficient (acceptor) moieties, respectively. The conventional bulk heterojunction (BHJ) device structure ITO/PEDOT:PSS/PDINI-OBTC8:PCB71M/LiF/Al was utilized to fabricate polymer solar cells (PSCs), which comprises the blend of PDINI-OBTC8 and [6,6]-phenyl-$C_{71}$-butyric acid methyl ester ($PC_{71}BM$) in BHJ network. A BHJ PSC that contain PDINI-OBTC8 delivered power conversion efficiency (PCE) value of 1.68% with 1 vol% of 1,8-diidooctane (DIO) under the illumination of A.M 1.5G 100 $mW/cm^2$.

Development of Nano Ceramic Structures for HEPA Type Breathing Wall (HEPA Filter형 숨쉬는 벽체용 나노세라믹 여재개발)

  • Kim, Jong-Won;Ahn, Young-Chull;Kim, Gil-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.274-279
    • /
    • 2008
  • In the perspective of saving energy in buildings, high performance of insulation and air tightness for improving the heating and the cooling efficiency has brought the positive effect in an economical view. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and it is also very harmful to residents because they spend over 90% of their time in the indoor area. Therefore, the ventilation is important to keep indoor environment clean and it can also save energy consumption. In this study, a HEPA type breathing wall is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. To make fine porous structures, polymer nano fibers which were made by electro spinning method are used as a precursor. The nano fibers are coated with SiO2 nano particles and finally the HEPA type breathing wall is made by sintering in the electric furnace at $300\sim500^{\circ}C$. The pressure drops of nano ceramic structure are 8.2, 25.5 and 44.9 mmAq at the face velocity of 2.0, 5.9 and 8.8 cm/s, respectively. Also the water vapor permeability is $3.6g/m^2{\cdot}h{\cdot}mmHg$. In this research, the porous nano ceramic structures are obtained and the possibility for the usage of a material for HEPA type breathing wall can be obtained.