• Title/Summary/Keyword: Building Energy Efficiency

Search Result 753, Processing Time 0.028 seconds

A Study on the Application of Integrated Management System for Building Energy Efficiency (건물부문의 에너지 효율화를 위한 국가 건물에너지 통합관리 시스템의 활용방안 연구)

  • Yoo, Jung-Hyun;Kim, Jong-Yeob;Hwang, Ha-Jin
    • Land and Housing Review
    • /
    • v.3 no.3
    • /
    • pp.263-270
    • /
    • 2012
  • Energy consumption of building is given a sizable portion in total national energy conservation. From this reason, the integrated management system of national building energy was proposed to manage energy usage and of which feasibility study was demonstrated in Seoul at 2010. Expansion of the application availability for the aforementioned system, energy policies etc. have focused on the building sectors and future uses and developments are investigated. Specially, energy consumption and building documentary DB are useful to validate energy usage for each building and define to remodelling effect before and after. Furthermore, in this study, a number of developments and applications of the system and future uses of energy usage data can be identified.

An Analysis of Heating Energy Performance in Housings of ICF Method with Passive Design Applied (패시브 디자인을 적용한 ICF공법 주택의 난방에너지 성능 분석)

  • Kim, Jun-Hui;Lee, Tae-Gu
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.33-40
    • /
    • 2013
  • The world population is consuming more than 1/3 of the total energy for heating housings. Particularly in our country, 21% of the consumption energy is occupied by building section. Therefore, it is necessary to increase the energy efficiency in buildings, thus promoting a comfortable residential environment while minimizing energy consumption. Accordingly, this study presents considerations for implementing high-insulated and airtight passive houses. This study selected four houses with passive house design applied, performed building energy performance through PHPP2007, a German passive house design simulation program, and compared the building-specific heat loss and heat gain. As a result, the most vulnerable part to heat loss was turned out to be a window and the heat loss was caused by outer wall, roof, and ventilation. Accordingly, for the implementation of passive house, it is necessary to make a careful plan and airtight construction that are complementary to various parts through the energy performance analysis started from the design phase.

A Study on the Heat Transfer Phenomenon through the Glazing System (창호를 통한 열전달 현상에 관한 연구)

  • Kang, Eun-Yul;Oh, Myung-Won;Kim, Byung-Sean
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.32-37
    • /
    • 2009
  • An energy loss through the window system occupies about 10 to 30 percent on energy consumption of the whole building. That is the reason, several elements for a building composition of window system are the weakest from the heat. Insulation performance increases for the reducing heat loss. Heat transfer through the window system that is reducing heat transfer through conduction, convection and radiation. Insulation performance reinforcement methods classify improving heat specific quality of window system and improving efficiency of whole window system. The most application method among each methods is reducing emission ratio of the window system(Low-E glass), increasing a number of glazing(multiple window) and a method of vacuuming between glazing and glazing. Therefore this study is investigated a sort of glazing and specific character, U-value calculation with changing glazing thickness and calculation of temperature distribution and U-value with a glazing charging gas kind from double glazing. For a conclusion, an aspect of U-value figure at the smallest value case of vacuum glazing with Low-E coating. That means insulation efficiency is the best advantage during a building plan selecting vacuum glazing with Low-E coating for a energy saving aspect. In this way, U-value become different the number of glazing, coating whether or not and selecting injection gas. Therefore selecting of glazing is very important after due consideration by a characteristic and use of building and consideration of strong point and weak point.

  • PDF

A Study on Fabrication and Characteristics of Large Area Liquid-Crystal Cell for Smart-Window (스마트윈도우용 대면적 액정셀 제작과 특성에 대한 연구)

  • Lee, Seung-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.166-167
    • /
    • 2019
  • Smart windows are used as windows and doors to determine cooling and heating efficiency in the construction field. It's characteristics can increase the energy saving efficiency. In addition, the function of the smart window that can control the light transmittance transmitted from the external environment of the building to the building according to the needs of the user is attracting attention. In this study, a liquid crystal cell capable of controlling light transmittance of 297 × 210 ㎟ was fabricated by using a liquid crystal device as an optical shutter. Analysis of transmittance change according to driving voltage and driving stability according to thermal environment, We confirmed the applicability of building exterior materials as smart windows.

  • PDF

Empirical Research on Application of ICT for Reduction of Energy Consumption of Hospital Buildings (ICT를 활용한 병원건물의 에너지 절감방안 연구)

  • Lee, Junghwan;Han, Youngdo;Kim, Dongwook
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.422-430
    • /
    • 2018
  • Increase in oil prices and building energy consumption has been a great burden for Korea which has significant energy dependence on foreign energy sources. In this context, reduction of building energy consumption, which comprises 40% of total energy consumption, is a very important issue. This research therefore empirically analyzed a hospital "P" that implemented ICT-based energy consumption and cost reduction initiative. The hospital first replaced existing water absorber for heating/cooling air and boiler for heating water with water heat storage heat pump system. This was accompanied by subscribing to different electricity price plans to maximize cost reduction. Secondly, the hospital additionally applied ICT-based optimized control algorithm that considers surrounding factors (external temperature, changes in energy demand). The analysis of these mechanisms indicate that the ICT-based energy consumption and cost reduction initiative for hospitals can reduce energy consumption by 53.6% with replacement of low-efficiency equipment and additionally by 18.2% with optimized control algorithm. The mechanisms will provide energy consumption reduction opportunities for other hospitals and buildings with high energy consumption.

An analysis on the energy and daylighting efficiencies of rehabilitated Linde-Robinson Laboratory : Solar Telescope Daylighting with Coelostat (복원된 Linde-Robinson Laboratory의 에너지 및 채광시스템 효율 분석 : Coelostat Solar Telescope Daylighting)

  • Han, Hyun Joo;Selkowitz, Stephen;Oh, Seung Jin;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.53-63
    • /
    • 2014
  • Caltech's Linde-Robinson Laboratory was originally built in 1932 featuring a Spanish mission-style design, whose function was to facilitate a solar observatory with a coelostat solar telescope dome and a solar shaft extending from the roof to more than 36.58m below the ground. The building has now been transformed into a cutting-edge center for research and instruction in global environmental science that retains its original character while setting new standards in energy efficiency and green design. It is the first LEED Platinum lab in the USA for renovation of a historical research building, consuming only one-sixth of the energy that the lab's comparable laboratories do. This work introduces various energy and environmental strategies hired for its sustainable rehabilitation and, especially, examines the functional validity of solar telescope daylighting by a coelostat. Observations were made on the llumination of underground floors, where illuminances of 40~50 lx were measured.

Determining the Maximum Capacity of a Small Wind Turbine System Considering Live Loads of Buildings (건물의 활하중을 고려한 소형풍력발전시스템의 최대 설비용량 선정기법)

  • Lee, Yeo-Jin;Kim, Sung-Yul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.165-170
    • /
    • 2016
  • Due to environmental issues such as global warming, the reduction of greenhouse gas emissions has become an inevitable measure to be taken. Among others, the building sector accounts for 50% of total carbon dioxide emissions, which is significantly high. Therefore, in order to reduce carbon dioxide emissions of the buildings, improving the energy efficiency by utilizing wind power among renewable energy sources is recommended. In case of buildings in the planning stage, it is possible to take the load of wind power generation systems into consideration when determining installed capacity. Already completed buildings, however, should be connected to small wind electric systems according to the live loads of the buildings based on the architectural design criteria. In order to connect to a building that has already been completed, it is necessary to consider the load of the small wind electric system as well as the live load of building. In addition, we need to generate the maximum electricity possible by determining the maximum installed capacity in a small area. In this paper, we propose the method for determining maximum capacity for building integrated small wind electric systems, which takes into account the considerations associated with connecting small wind electric systems to completed buildings. This can be developed into a system linked to solar power, which makes it possible to improve the energy independence of the building. In addition, carbon dioxide reduction by improving energy efficiency is expected.

A research on the $CO_2$ Peak Point Control according to Ventilation Frequency during Sleeping (취침 시 환기횟수에 따른 $CO_2$ 피크치 제어에 관한 연구)

  • Won, You-Mi;Kim, Dae-Seung;Lee, Woo-Jin;Kim, Dong-Gyu;Kim, Se-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.731-736
    • /
    • 2008
  • There was in a building and with the technical advance for a energy saving the secret efficiency of the building improved together and continuously was come. The indoor air environment brought about the deterioration which is remarkable because of it. But time of most the indoor air environmental matter is one in the element which healthily affects biggest in the moderns who lives from the interior space. Today the plan for the air environmental maintenance which dwelling space is appropriate is demanded, is the actual condition where the method of the ventilation control which is energy saving and efficient is necessary. From the research which it sees, number of ventilation 0.7 time of the aeration which is a domestic legal baseline is excessive is judged from the research which sees, The sleep hour assumes it stays most long the hour when, number of ventilation 0 time 0.1 times 0.4 times $CO_2$ consistency measurements and analyzes number of ventilation conclusive escape. And $CO_2$ peak point control leads it decides a data, effective and it talks an energy saving circulation control method and it does to sleep.

  • PDF

Analysis on Energy Demand Resulting From the Change in Window Area & Installation of Interior Exterior Blinds (건축물에너지효율등급 기밀시험이 등급에 미치는 영향분석)

  • Kim, Dae-Won;Chung, Kwang-Seop;Kim, Young-Il;Nam, Ariasae;Ju, Jung-Kyeong
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • The ventilation frequency of 0.5 times in residential facilities is applied mandatorily to the housing facilities containing more than 100 house units to improve the indoor air quality and create comfortable interior conditions and pleasantness for residents. The Building Energy Efficiency Rating system requires the implementation of leakage test based on ventilation frequency with the test results being reflected in the efficiency ratings, thereby stimulating the precise construction of the fittings in the periphery of windows and savings of energy that can be lost due to the infiltration air. The inspection results of the Building Energy Efficiency Rating at the site showed that the ventilation frequency was in the range between 0.63 and 0.71 and that the difference was found to have a significant effect on the amount of energy reduction. It is urgent to conduct the study on highly leakage-proof buildings and construction methods, along with the expansion of mandatory leakage-proof diagnosis of non-residential buildings, considering the mandatory ventilation frequency below 0.6 for passive houses under the European standards and the target set by Korea to introduce the passive house, the rigorous standard for energy efficiency in buildings and mitigating their ecological footprint, by 2017 and achieve the zero house by 2025.

An Analysis on Current Status of Certification for Green Building Revitalization in School - Focused on the School Located in Gyeonggi-do Province - (학교시설의 녹색건축 활성화를 위한 인증현황 분석 연구 - 경기도 학교시설을 중심으로 -)

  • Kim, Jang-Young;Kim, Sung-Joong;Lee, Seung-Min
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.14 no.3
    • /
    • pp.9-17
    • /
    • 2015
  • In this paper, there are several analysis on G-SEED, Building Energy Efficiency Rating System, Energy Performance Index, Energy Saving Plan about how they are applied by classification and planning standard. The analysis result found out that G-SEED has low select percentage by having difficulties to managing and additional cost when the each class is selected. And also, Building Energy Efficiency Rating System in school is planed in comparably simple design and similar size and also mostly uses high efficient machines, which was in high lever comparing to the system in facilities in other uses. In the case of EPI, there are differences on acquiring grades by each region. Especially, Gyung-gi region has a low grade on architecture part comparing to other parts, which seems to acquire more grades by strengthen insulation performance. By the result from the three standards, many facilities has only formal plan to pass the required standard without considering specialities of each buildings, which has a tendency to have a pattern to have a minimum criteria. However, School has a symbolic building which has a obligation to be the base of the aim for growing green energy buildings and green education for students. Therefore, planning with understanding of specialities of the facility, having various and rational evaluation standards from the planning of the building is necessary.