• 제목/요약/키워드: Building Energy Conservation Design

검색결과 81건 처리시간 0.022초

Research and Development of RFIC Technology in Smart Temperature Information Material

  • Chang, Chih-Yuan;Hung, San-Shan;Chang, Yu-Chueh;Peng, Yu-Fang
    • Journal of Construction Engineering and Project Management
    • /
    • 제1권1호
    • /
    • pp.18-23
    • /
    • 2011
  • Conservation of energy and fuel is the trend in smart building design. Radio Frequency Integrated Circuit (RFIC) technology is often used in temperature sensing and signal transmission to manage indoor temperature, but it is rarely applied to the shell of the building. Heat retention and poor insulation in building shells are the largest causes of high energy consumption by indoor air conditioning. Through combining RFIC technology with temperature sensors, this study will develop smart temperature information material that can be embedded in concrete. In addition to accurately evaluating the effectiveness of shell insulation material, the already-designed Building Physiology Information System can monitor long-term temperature changes, leading to smarter building health management.

RESEARCH AND DEVELOPMENT OF RFIC TECHNOLOGY IN SMART TEMPERATURE INFORMATION MATERIAL

  • Chih-Yuan Chang;San-Shan Hung;Yu-Chueh Chang;Yu-Fang Peng
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.480-486
    • /
    • 2011
  • Conservation of energy and fuel is the trend in smart building design. Radio Frequency Integrated Circuit (RFIC) technology is often used in temperature sensing and signal transmission to manage indoor temperature, but it is rarely applied to the shell of the building. Heat retention and poor insulation in building shells are the largest causes of high energy consumption by indoor air conditioning. Through combining RFIC technology with temperature sensors, this study will develop smart temperature information material that can be embedded in concrete. In addition to accurately evaluating the effectiveness of shell insulation material, the already-designed Building Physiology Information System can monitor long-term temperature changes, leading to smarter building health management.

  • PDF

아트리움의 에너지 절약(節約)과 환경조절기능(環境調節機能)에 관한 연구(硏究) (The Effect of Atrium on Energy Conservation and Environmental Control of a Building)

  • 이언구;이현호
    • 태양에너지
    • /
    • 제13권2_3호
    • /
    • pp.5-11
    • /
    • 1993
  • 이 논문은 최근들어 보급이 확대되고 있는 아트리움(Atrium)을 이용한 건물에 있어서, 아트리움의 가장 기본적 인 기능인 에너지절약 효과와 환경조절효과가 거의 실효를 거두지 못하고 오히려 환경의 악화와 에너지소비 증가로 나타나는 점을 고려하여, 아트리움의 환경조절기능에 대한 기초사항을 체계적으로 정리하고 에너지절약 성능을 정량적으로 분석하여 건축설계시 적용할 수 있는 아트리움의 설계기법을 제시함으로써 아트리움을 통한 건물의 에너지절약 효과를 극대화하고 쾌적환경을 조성하는 기초자료를 제공하고자 한다.

  • PDF

도시차원에서의 에너지 적용에 따른 문제점 및 체계 검토 (Investigation of Problem and System by Energy Application in City Level)

  • 박률;김삼열;박진영;이상진;이정재
    • 한국태양에너지학회 논문집
    • /
    • 제29권3호
    • /
    • pp.51-58
    • /
    • 2009
  • Recently, many social, economical and political problems have occurred in the field of urban energy supply because of the depletion of fossil fuels and the international climate change agreements and the current energy-related laws focus on individual buildings which makes them difficult to implement. Also, the policies for energy savings have increased day by day, but it is difficult to establish efficient urban plan because of lack of integrated policies and institutions. Current legal systems for urban plan does not cover domestic and international climate change agreements, energy related industry's structural changes and other environmental problems such as embodied energy and global warming. This paper tries to investigate current conditions of legal system to provide fundamental materials for improving energy conservation in urban plan.

BIM기반 에너지절약계획서 건축부문 부분자동화 작성 시스템 제안 - BIM 소프트웨어와 EXCEL VBA를 이용한 자동화과정을 중심으로 - (A Proposal for Partial Automation Preparation System of BIM-based Energy Conservation Plan - Case Study on Automation Process Using BIM Software and Excel VBA -)

  • 류재호;황종민;김솔이;서화영;이지현
    • 한국BIM학회 논문집
    • /
    • 제12권2호
    • /
    • pp.49-59
    • /
    • 2022
  • The main idea of this study is to propose a BIM-based automation system drawing up a report of energy conservation plan in the architecture division. In order to obtain a building permit, an energy conservation plan must be prepared for buildings with a total floor area of 500m2 or more under the current law. Currently, it is adopted as a general method to complete a report by obtaining data and drawings necessary for an energy conservation plan through manual work and input them directly into the verification system. This method takes a lot of effort and time in the design phase which ultimately increases the initial cost of the business, including the services of companies specialized in the environmental field. However, in preparation for mandatory BIM work process in the future, it is necessary to introduce BIM-based automatic creation system that has an advantage for shortening the whole process to enable rapid permission of energy-saving designs for buildings. There may be many methods of automation, but this study introduces how to build an application using Dynamo of Revit, in terms of utilizing BIM, and write an energy conservation plan by automatic completion of report through Dynamo and Excel's VBA algorithm, which can save time and cost in preparing the report of energy conservation plan compared with the manual process. Also we have insisted that the digital transformation of architectural process is a necessary for an efficient use of our automation system in the current energy conservation plan workflow.

공동주택의 에너지 자립을 위한 핵심요소기술의 에너지 성능평가 (Energy Performance Evaluation of Zero Energy Technologies for Zero Energy Multi-House)

  • 윤종호;김병수
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.161-167
    • /
    • 2007
  • Zero Energy Multi-House(ZeMH) signifies a residential building which can be self sufficient with just new and renewable energy resources without the aid of any existing fossil fuel. For success of ZeMH, various innovative energy technologies Including passive and active systems should be well integrated with a systematic design approach. The first step for ZeMH is definitely to minimize the conventional heating and cooling loads over 50% with major energy conservation measure and passive solar features which are mainly related to building design components such as super-insulation, super window, including infiltration and ventilation issues. The purpose of this study is to analyze the thermal effect of various building design components in the early design of ZeMH. The process of the study is presented in the following. 1) selection reference model for simulation 2) verification of reference model with computer simulation program(ESP-r 9.0). 3) analysis of effect according to insulation-thickness, kinds of windows, rate of infiltration. and The simulation results indicate that almost 50% savings of conventional heating load in multi-house can be achieved with the optimum design of building components such as super insulation, super window, infiltration, ventilation.

A Dynamic Model of a Gas Engine-Driven Heat Pump in Cooling Mode for Real-Time Simulation

  • Shin, Young-Gy;Yang, Hoon-Cheul;Tae, Choon-Seob;Jang, Cheol-Yong;Cho, Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권3호
    • /
    • pp.85-93
    • /
    • 2006
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump (GHP) for the design of control algorithm. The dynamic model of a GHP was based on conservation laws of mass and energy. For the control of refrigerant pressures, actuators such as an engine throttle valve, outdoor fans, coolant three-way valves and liquid injection valves were controlled by P or PI algorithm. The simulation results were found to be realistic enough to be applied for the control algorithm design. The model could be applied to build a virtual real-time GHP system so that it interfaces with a real controller for the purpose of developing control algorithm.

Dynamics Modeling of a Gas Engine-Driven Heat Pump in Cooling Mode

  • Shin Younggy;Yang Hooncheul;Tae Choon-Seob;Jang Cheol-Yong;Cho Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.278-285
    • /
    • 2006
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump (GHP) for design of control algorithm. The dynamics modeling of a GHP was based on conservation laws of mass and energy. For automatic control of refrigerant pressures, actuators such as engine speed, outdoor fans, coolant three-way valves and liquid injection valves were PI or P controlled. The simulation results were found to be realistic enough to apply for control algorithm design. The model can be applied to build a virtual real-time GHP system so that it interfaces with a real controller in purpose of prototyping control algorithm.

에너지 절약형 건물의 통합설계 확산을 위한 시뮬레이션 사용성 개선 방향 - 실무자 설문과 설계 프로세스 비교 및 분석을 중심으로 - (How to Improve Usability of Building Energy Simulation for the Integrated Design Process - Based on Practitioner Survey and Design Process Comparison -)

  • 김선혜
    • KIEAE Journal
    • /
    • 제15권6호
    • /
    • pp.47-56
    • /
    • 2015
  • Purpose and Method: Despite benefits of building energy simulations, practitioners seem to be reluctant to use simulations for design decision making. By means of survey and interviews, this study aims to investigate domestic hindrance against increasing simulation usability, and to collect user requirement to enhance technical functionality of the simulation. Also this study compares the Information Sharing Workflow by Stantec and general domestic design process in order to identify a direction of the Integrated Design Process. Result: Finally this study wraps up with suggestions of how simulation functionality and use protocol should be in order to satisfy user requirement and also to gather more users.

Utilization of Building Colors with the Energy-Oriented Algae Façade System

  • Jo, Han-Sol;Han, Seung-Hoon
    • KIEAE Journal
    • /
    • 제17권1호
    • /
    • pp.43-48
    • /
    • 2017
  • Purpose: Building owners or residents have concerns to strive for energy-saving and environmental conservation by utilizing with eco-friendlier energy resources for their physical environment. In this paper, an algae façade system is proposed as an energy-friendly building component to improve energy productivity and indoor environmental quality, and this study aims at verifying alternative technologies for implementing building elevations that contain various colors equipped with algae façade systems and suggesting design guidelines to enhance both building performance and design values. Method: The color of algae is basically ranged about the saturation green, and it is hardly converted to other variations. Such a problem can be resolved through the artificial lights like LED (Light Emitting Diode) lamps to mix the color from the algae and buildings could possibly change the elevation in many ways under the influence of daylight. Result: As a result, the suggested system may increase the aesthetic aspect of the building in response to environmental changes. The system cannot possibly be applied for only new construction, but also it can be utilized with the existing buildings as well. The proposed system is expected to be applied not only a new construction and any existing buildings as well, and it will cover from the environmentally friendly energy generation in the industry to a new application system for increasing energy efficiency and the beauty of building envelopes.