• 제목/요약/키워드: Building Design Control System

검색결과 485건 처리시간 0.031초

초고층 공사 리프트의 그룹제어 시스템 적용을 위한 기초 연구 (A Preliminary Study to Apply Group Control System to Lifts for High-rise Construction)

  • 김태훈;임현수;김창원;김승우;조훈희;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.260-261
    • /
    • 2017
  • The objective of this study is to propose the basic design plan of system by comparing and analyzing application environment of lift and elevator group control system, as preliminary study for the application of group control system to lifts for high-rise construction. The basic design plan is suggested in terms of group control algorithm, hall call system type, operation information recording device, information communication method, and operation method. The results of this study can be used as basic data for software and hardware design for application of group control technology of lifts for super tall building construction and ultimately contribute to improve the operation efficiency of lift for high-rise construction.

  • PDF

3D 모델링 기반 빌딩관제시스템의 설계 및 구현 (Design and Implementation of Building Control System based 3D Modeling)

  • 문상호;김병목;이계은
    • 한국멀티미디어학회논문지
    • /
    • 제23권5호
    • /
    • pp.673-682
    • /
    • 2020
  • Buildings are becoming more and more high-rise and large-scale in recent years, so in the event of a disaster such as a fire, enormous human and economic damage is expected. Therefore, management, security, and fire control are essential for large buildings in the city. Because these large buildings are very complex outside and inside, they need a three-dimensional control based on 3D modeling rather than a simple flat-oriented control. To do this, this paper designed and implemented a building control system based on 3D modeling. Specifically, we designed a 3D building / facility editing module for 3D modeling of buildings, a 3D based control module for building control, and a linkage module that connects information such as firefighting equipment, electrical equipment and IoT equipment. Based on this design, a building control system based on 3D modeling was implemented.

Development of Large Tuned Mass Damper with Stroke Control System for Seismic Upgrading of Existing High-Rise Building

  • Hori, Yusuke;Kurino, Haruhiko;Kurokawa, Yasushi
    • 국제초고층학회논문집
    • /
    • 제5권3호
    • /
    • pp.167-176
    • /
    • 2016
  • This paper describes a large tuned mass damper (TMD) developed as an effective seismic control device for an existing highrise building. To realize this system, two challenges needed to be overcome. One was how to support a huge mass that has to move in any direction, and the second was how to control mass displacement that reaches up to two meters. A simple pendulum mechanism with strong wires was adopted to solve the first problem. As a solution to the important latter problem, we developed a high-function oil damper with a unique hydraulic circuit. When the mass velocity reaches a certain value, which was predetermined by considering the permissible displacement, the damper automatically and drastically increases its damping coefficient and limits the mass velocity. This velocity limit function can effectively and stably control the mass displacement without any external power. This paper first examines the requirements of the TMD using a simple model and clarifies the constitution of the actual TMD system. Then the seismic upgrading project of an existing high-rise building is outlined, and the developed TMD system and the results of performance tests are described. Finally, control effects for design earthquakes are demonstrated through response analyses and construction progress is introduced.

Prediction and control of buildings with sensor actuators of fuzzy EB algorithm

  • Chen, Tim;Bird, Alex;Muhammad, John Mazhar;Cao, S. Bhaskara;Melvilled, Charles;Cheng, C.Y.J.
    • Earthquakes and Structures
    • /
    • 제17권3호
    • /
    • pp.307-315
    • /
    • 2019
  • Building prediction and control theory have been drawing the attention of many scientists over the past few years because design and control efficiency consumes the most financial and energy. In the literature, many methods have been proposed to achieve this goal by trying different control theorems, but all of these methods face some problems in correctly solving the problem. The Evolutionary Bat (EB) Algorithm is one of the recently introduced optimization methods and providing researchers to solve different types of optimization problems. This paper applies EB to the optimization of building control design. The optimized parameter is the input to the fuzzy controller, which gives the status response as an output, which in turn changes the state of the associated actuator. The novel control criterion for guarantee of the stability of the system is also derived for the demonstration in the analysis. This systematic and simplified controller design approach is the contribution for solving complex dynamic engineering system subjected to external disturbances. The experimental results show that the method achieves effective results in the design of closed-loop system. Therefore, by establishing the stability of the closed-loop system, the behavior of the closed-loop building system can be precisely predicted and stabilized.

스마트 연결 제어 시스템과 연결 구조물의 통합 최적 설계 (Integrated Optimal Design of Smart Connective Control System and Connected Buildings)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.43-50
    • /
    • 2019
  • A smart connective control system was invented recently for coupling control of adjacent buildings. Previous studies on this topic focused on development of control algorithm for the smart connective control system and design method of control device. Usually, a smart control devices are applied to building structures after structural design. However, because structural characteristics of building structure with control devices changes, a iterative design is required for optimal design. To defeat this problem, an integrated optimal design method for a smart connective control system and connected buildings was proposed. For this purpose, an artificial seismic load was generated for control performance evaluation of the smart coupling control system. 20-story and 12-story adjacent buildings were used as example structures and an MR (magnetorheological) damper was used as a smart control device to connect adjacent two buildings. NSGA-II was used for multi-objective integrated optimization of structure-smart control device. Numerical simulation results show the integrated optimal design method proposed in this study can provide various optimal designs for smart connective control system and connected buildings presenting good control performance.

Design and implementation of AMD system for response control in tall buildings

  • Teng, J.;Xing, H.B.;Xiao, Y.Q.;Liu, C.Y.;Li, H.;Ou, J.P.
    • Smart Structures and Systems
    • /
    • 제13권2호
    • /
    • pp.235-255
    • /
    • 2014
  • This paper mainly introduces recently developed technologies pertaining to the design and implementation of Active Mass Damper (AMD) control system on a high-rise building subjected to wind load. Discussions include introduction of real structure and the control system, the establishment of analytical model, the design and optimization of a variety of controllers, the design of time-varying variable gain feedback control strategy for limiting auxiliary mass stroke, and the design and optimization of AMD control devices. The results presented in this paper demonstrate that the proposed AMD control systems can resolve the issues pertaining to insufficient floor stiffness of the building. The control system operates well and has a good sensitivity.

빌딩 에너지 관리 최적화 알고리즘 설계 및 구현 (Design and Implementation of Optimal Control Algorithms for Building Energy Management)

  • 진중화;정선태
    • 설비공학논문집
    • /
    • 제16권10호
    • /
    • pp.969-976
    • /
    • 2004
  • Building energy saving is one of the most important issues in these days. Energy saving control strategies should be developed properly to achieve the saving. One of such area we could apply is the HVAC (Heating, Ventilation and Air-Conditioning) system. Through the optimal control algorithm for building energy management system (EMS), you can not only save the cost of building energy, but also protect HVAC system components against the unexpected condition. In order to verify the effectiveness of building energy saving, field test was accomplished for several months at 'A' building. And to get the measured data, remote control was used. If the remote control is used in BAS (Building Automation System), control and monitoring can be done for all of the building systems, such as HVAC, power, lighting, security and fire-alarm etc. anywhere any time. Using the remote control, Control and monitoring is possible for the testing system without going there. As the results of field test, we could reduce $5{\sim}10\%$ of the building energy cost.

A Novel Design of the Distributed Fire Alarm Control System by Developing Intelligent Control Modules with LonTalk Protocol

  • Hong, Won-Pyo;Goo, Sung-Hoan;Park, Won-Guk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.70.6-70
    • /
    • 2001
  • There are many economic and operational reasons to integrate fire alarm signaling system with other building automation system. Integration of this requires communication standard and careful design practices. The important point for this is also the development of intelligent control modules for replacing the conventional zone adapter in fire system. Therefore, this paper proposes an new conceptual design of the distributed fire alarm signaling system and a new intelligent control modules with LonTalk Protocol. Newly proposed additions to Lonworks network make it very well suited for integration fire systems with other building automation systems. Additionally, it is very important that best design practices ...

  • PDF

구조-제어시스템의 동시최적설계를 위한 유전자알고리즘 및 Goal Programming 기법 (Genetic Algorithm and Goal Programming Technique for Simultaneous Optimal Design of Structural Control System)

  • 옥승용;박관순;고현무
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.497-504
    • /
    • 2003
  • An optimal design method for hybrid structural control system of building structures subject to earthquake excitation is presented in this paper. Designing a hybrid structural control system nay be defined as a process that optimizes the capacities and configuration of passive and active control systems as well as structural members. The optimal design proceeds by formulating the optimization problem via a multi-stage goal programming technique and, then, by finding reasonable solution to the optimization problem by means of a goal-updating genetic algorithm. The process of the integrated optimization design is illustrated by a numerical simulation of a nine-story building structure subject to earthquake excitation. The effectiveness of the proposed method is demonstrated by comparing the optimally designed results with those of a hybrid structural control system where structural members, passive and active control systems are uniformly distributed.

  • PDF

BIM 기반 건축설계 품질검토를 위한 체크리스트 개발 연구 (Development of Check-list for BIM Based Architectural Design Quality Check)

  • 최중식;김인한
    • 한국CDE학회논문집
    • /
    • 제18권3호
    • /
    • pp.177-188
    • /
    • 2013
  • The construction industry consists of various and massive architectural information as an architectural process includes a variety of design stages with cooperation of many disciplines. Particularly, architectural information is generated and managed through the life cycle of a building, from conceptual design stage to the construction and maintenance. A Building Information Model (BIM) serves as a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life-cycle from inception onward. BIM technology accomplished quantitative development being utilized in various disciplines. However, it is necessary to develop environment and requirement for qualitative improvement of BIM based project. Particularly, requirement is very important for architectural design evaluations. The purpose of this study is to develop and apply of quality control check-list for improving the quality of architectural design in BIM environments. To achieve this purpose, the authors have investigated case study for open BIM data quality control (software, guideline and application case) and classified quality control targets according to physical/logical quality control and data quality. In addition, the authors have defined open BIM based quality control process and developed quality control check-list. Finally, the authors have developed automatic quality check system using requirements for efficient quality control based on open BIM.