• Title/Summary/Keyword: Building Block

Search Result 731, Processing Time 0.027 seconds

Effect of Hollow Glass Powder on the Self-Compacting Concrete (유공 유리분말이 자기충전 콘크리트의 특성에 미치는 영향)

  • Yoon, Seob;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • In this study, compacting, passing performance, segregation resistance and rheological properties were tested to improve the stability of fresh concrete in the production and construction of self-compacting concrete (SCC) using hollow glass powder(GB). As a result, T50 reaching time was shortened up to amount of GB $2.0kg/m^3$. The compacting according to the amount of GB was improved by ball bearing effect of GB. However, T50 reaching time was slightly increased at $4.0kg/m^3$. In the case of passing performance, the result showed that plain was Class 1, GB $0.5{\sim}2.0kg/m^3$ was Class 0, GB $4.0kg/m^3$ was Class 1. Therefore, the passing performance was improved with 'No blocking' up to amount of GB $2.0kg/m^3$. Passing performance Block step (PJ) number by J-ring method was also best at GB $1.0kg/m^3$. In the case of segregation resistance according to the amount of GB, dynamic segregation resistance was increased compared to plain regardless of the amount of GB. And static segregation resistance showed 2.5% of segregation rate at GB $1.0kg/m^3$. Therefore, it was greatly improved compared to plain (12.5%). In the case of rheology property according to the amount of GB, plastic consistency by increasing of GB content didn't show big difference. However, yield stress by increasing of GB content was decreased with GB $1.0kg/m^3$. In conclusion, GB $1.0kg/m^3$ was effective for improvement of compacting, passing performance and yield stress. Also, it will be useful for stability of SCC by improving segregation.

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.

Analysis of Temperature Profiles by Land Use and Green Structure on Built-up Area (시가화지역 토지이용 및 녹지구조에 따른 온도변화 연구)

  • Hong Suk-Rwan;Lee Kyong-Jae;Han Bong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.19 no.4
    • /
    • pp.375-384
    • /
    • 2005
  • This study was conducted selecting 44 places with a block unit subject to urban area in Gangnam-gu, to analyze a temperature change according to land use and green structure. In this study, it was used the broad-wide urban temperature, supported by Landset TM and ETM+ satellite image 6scene(1999${\~}$2002). The result of the research, the land use pattern has slightly influence on a temperature change of urban area. The result from correlation analysis between temperature and the factors affected by land cover type, such as building-to-land ratio(A correlation coefficient is 0.368${\~}$0.709) have positive correlation and green area ratio(a correlation coefficient is -0.551${\~}$-0.860) have negative correlation. The result from correlation analysis between temperature and green capacity of the land, crown projection area ratio, each factor have negative correlation with temperature, as showing that a correlation coefficient of green capacity of the land is -0.577(June 2006)${\~}$-0.882(June 1999) and crown projection area ratio's is -0.549(June 2001)${\~}$-0.817(June 1999). The result of the regression analysis for establishing urban area temperature change prediction model showed that green capacity of the land of the explanation variable was accepted.

Growth and Characterization of Catalyst-Free InAs Nanowires on Si (111) by MBE

  • Hwang, Jeong-U;Park, Dong-U;Ha, Jae-Du;An, Heung-Bae;Kim, Jin-Su;Kim, Jong-Su;No, Sam-Gyu;Kim, Yeong-Heon;Lee, Sang-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.353-353
    • /
    • 2012
  • InAs nanowires (NWs)는 나노소자스케일의 전자소자나 광전자소자를 위한 기본 단위(building block)로 사용될 수 있고, 1차원적 나노구조를 가지면서 나타나는 특별한 전기적, 광학적 특성으로 인해 전계효과 트랜지스터, 레이저, 광발광 다이오드, 가스 검출 센서 등의 많은 응용소자로 활용을 위한 연구가 진행되 있으며 주로 실리콘, 갈륨비소 기판 위에 금속유기기상 증착(MOCVD) 또는 분자선 증착 (MBE)을 이용하여 선택적 수직배열 성장 조절을 위한 연구와 특성 평가 연구가 주로 이뤄지고 있다. 본 연구에서는 InAs NWs를 MBE 장치를 이용하여 Si(111) 기판 위에 Au와 같은 촉매를 사용하지 않고 Si과 InAs의 큰 격자 불일치로 인하여 성장되는 Volmer-weber 성장 모드를 이용 하였다. InAs NW 성장모드는 Si ($5.4309{\AA}$)과 InAs ($6.0584{\AA}$) 사이에 큰 격자상수 차이를 이용하게 되는데 촉매를 사용하여 성장하는 일반적인 이종 화합물 반도체 성장 모드와 달리 액상상태가 존재하지 않고 바로 In과 As이 Si 기판 위를 이동하여 수직방향으로 성장이 이루어지는 vaporsolid(VS) 모드이다. InAs NW V-S 성장 모드는 Si 기판과의 격자 상수차에 의한 스트레스를 이용해야 하므로 Si기판 위에 존재하는 native oxide는 완벽히 제거되어야 한다. InAs NW 최적 성장 조건을 찾기위해 V/III raitio, 성장 온도, 기판표면처리 등의 성장 변수를 변화 시켜가며 실험을 수행하였다. Native oxide를 제거하기 위하여 HF와 buffered oxide etchant (BOE)를 사용하였다. InAs NWs 성장조건은 Indium flux를 고정 시키고 V/III ratio는 50~400까지 변화를 주었다. V/III ratio를 200으로 고정을 시키고 성장온도를 $375{\sim}470^{\circ}C$에서 성장 하였다. 이 때 InAs NWs는 $430^{\circ}C$에서 가장 높은 밀도와 aspect ratio를 얻을 수 있었다. Arsenic flux에 대해서는 많을 수록 좋은 aspect ratio를 얻을 수 있었다. 하지만 InAs 구조의 절대 부피는 거의 같다는 것을 확인 할 수 있었고 이는 온도와 V/III ratio가 Indium adatom의 surface migration length에 대하여 중요한 요소로 작용되는 것을 알 수 있었다.

  • PDF

A Study on the Welding Amount Estimation System combined with 3D CAD Tool (3차원 CAD 통합형 용접물량 산출 시스템에 관한 연구)

  • Ruy, Won-Sun;Kim, Ho-Kyeong;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3184-3190
    • /
    • 2013
  • These days, the great part of design processes in the field of ship or offshore manufacturing are planed and implemented using the customized CAD system for each ship-building companies. It means that all information for design and production could be extracted and reused at the useful other area cost considerable time and efforts. The representative example is the estimation of welding length and material amount which is demanded during the construction of ship or offshore structures. The proper estimation of welding material to be used and the usage of them at the stage of schedule planning is mostly important to achieve the seamless process of production and expect the costing in advance. This study is related to the calculation of welding length and needed material amount at the stage of design complete utilizing the CAD system. The calculated amount are classified according to welding position, stage, block, bevel and welding type. Moreover it is possible to predict the working time for welding operation and could be used efficiently for the cost management using the results of this research.

Design of a CMOS Dual-Modulus Prescaler Using New High-Speed Low-Power TSPC D-Flip Flops (새로운 고속 저전력 TSPC D-플립플롭을 사용한 CMOS Dual-Modulus 프리스케일러 설계)

  • Oh, Kun-Chang;Lee, Jae-Kyong;Kang, Ki-Sub;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.9 no.2 s.17
    • /
    • pp.152-160
    • /
    • 2005
  • A prescaler is an essential building block for PLL-based frequency synthesizers and must satisfy high-speed and low-power characteristics. The design of D-flip flips used in the prescaler implementation is thus critical. Conventional TSPC D-flip flops suffer from glitches, unbalanced propagation delay, and unnecessary charge/discharge at internal nodes in precharge phase, which results in increased power consumption. In this paper a new dynamic D-flip flop is proposed to overcome these problems. Glitches are minimized using discharge suppression scheme, speed is improved by making balanced propagation delay, and low power consumption is achieved by removing unnecessary discharge. The proposed D-flip flop is employed in designing a 128/129 dual-modulus prescaler using $0.18{\mu}m$ CMOS process parameters. The designed prescaler operates up to 5GHz while conventional one can operate up to 4.5GHz under same conditions. It consumes 0.394mW at 4GHz that is a 34% improved result compared with conventional one.

  • PDF

Development of the Aircap Module Attached to the Window Through Rolling (롤링을 통한 창호부착형 에어캡 모듈 개발)

  • Her, Ji Un;Seo, Jang Hoo;Kim, Yong Seong;Lee, Heang Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.11
    • /
    • pp.559-569
    • /
    • 2017
  • Various studies examining how to conserve building energy have been conducted recently. From such studies it has been determined that insulation performance of an aircap is viable and therefore aircaps are used as material for improving insulation performance of windows. However, the aircap for improving insulation performance of a window is attached on the front, causing infringement of the prospect right. Therefore, the purpose of this study is to develop an aircap module attached to the window through rolling, conducting performance verification throughfull-scale testbed and verifying its effectiveness. Findings of this study are as follow : 1) The module suggested in this study enables setting of an area wherein the aircap is attached through rolling so that the aircap rolls up using Velcro tape, and an insulation bar is suggested to block the gap between the aircap and window glass. 2) When the aircap is applied to the window, consumption of lighting energy increased during summer and winter by 2.8%~16.4% and 0%~76.2% respectively in comparison to no aircap application, indicating that it is unsuitable for conserving lighting energy. 3) In terms of conserving cooling and heating energy, an advantageous or effective aircap attachment method is the method whereby an aircap is attached to the front surface of a window. However, the method whereby an aircap is attached to a part of a window and where no aircap is attached increases consumption of cooling and heating energy during summer and winter by 6.0%~35.7% and 2.7%~41.6% respectively in comparison to the method wherein an aircap is attached to the front surface of a window. 4) In consideration of conserving cooling, heating and lighting energy, the attachment of an aircap to the front surface of window is the most appropriate method, and it is appropriate to attach the aircap at a position that is 1,500 mm or higher from the floor to secure the prospect right and minimize energy loss.

Effects of the Current Probe on Ground Resistance Measurements Using Fall-of-Potential Method (전위강하법에 의한 접지저항측정에 미치는 전류보조전극의 영향)

  • 이복희;엄주홍
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.6
    • /
    • pp.69-77
    • /
    • 2000
  • In this paper, the effects of the positions of the potential and current probes on the measurements of the ground resistance and potential gradients with the fall-of-potential method are described and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position and ground resistance of the measuring probes. The ground resistance is calculated by applying the 61.8% and rule in the fall-of-potential method, and then the potential probe is located on the straight line between the grounding electrode to be measured and the current probe. However, sometimes the grounding electrode to be measured and the measuring probes in on-site test might not be arranged on the straight line with adequate distance because there are building, road block, construction and other establishments. Provided that the grounding electrode to be measured and the measuring probes ar out of position on the straight line or have inadequate distance, the measurement of the ground resistance classically falls into an error and the measured ground resistance should be corrected. Measurements were focused on the grounding electrode system made by the ground rods of 2.4m long. It was found that the suitable separation between the grounding electrode to be measured and the current probe is more than 5 times of the length of the grounding electrode to be measured.

  • PDF

Homoepitaxial Growth Mode of $Si(5\;5\;12)-2\times1$ Confirmed by Scanning Tunneling Microscope (STH) (주사터널링현미경(STM) 기법으로 확인된 $Si(5\;5\;12)-2\times1$ 호모에피텍시 성장 방법)

  • Kim Hidong;Cho Yumi;Seo Jae M.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • The homoepitaxy of Si(5 5 12) at $495^{\circ}C$ has been studied by Scanning Tunneling Microscopy under ultrahigh vacuum. A Si-dimer is the basic building-block and preferentially adsorbs on a unique site, that is, the Si-dimer/adatom site at the (337) and the (225) subsections within the Si(5 5 12) unit cell. The Si(5 5 12) unit cell is faceted to $3\times(337)$ subsections filled with Si-addimers and $1\times(113)$ subsection. In this step the tetramer at the other (337) section within the unit cell is transformed to a dimer/adatom site which can accept Si-dimers. Each (337) section is faceted to $1\times(112)\;and\;1\times(113)$, and then finally the unit cell of Si(5 5 12) is faceted to $3\tiems(112)\;and\;4\times(113)$ and forms the facet of effective height, $2.34{\AA}$. In this step, mutual transformation between the honeycomb chain and the dimer/adatom occurs. Finally, the valley between (112) and (113) facets is filled. If once the last step is completed, the uniform and planar Si(5 5 12) terrace is recovered. From the present study, therefore, it can be concluded that the homoepitaxy on Si(5 5 12) is periodically achieved and such growth mode is quite unique since faceting of the substrate-unit-cell plays a critical role for controlling uniformity of the overlayer.

Three-dimensional anisotropic inversion of resistivity tomography data in an abandoned mine area (폐광지역에서의 3차원 이방성 전기비저항 토모그래피 영상화)

  • Yi, Myeong-Jong;Kim, Jung-Ho;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.7-17
    • /
    • 2011
  • We have developed an inversion code for three-dimensional (3D) resistivity tomography including the anisotropy effect. The algorithm is based on the finite element approximations for the forward modelling and Active Constraint Balancing method is adopted to enhance the resolving power of the smoothness constraint least-squares inversion. Using numerical experiments, we have shown that anisotropic inversion is viable to get an accurate image of the subsurface when the subsurface shows strong electrical anisotropy. Moreover, anisotropy can be used as additional information in the interpretation of subsurface. This algorithm was also applied to the field dataset acquired in the abandoned old mine area, where a high-rise apartment block has been built up over a mining tunnel. The main purpose of the investigation was to evaluate the safety analysis of the building due to old mining activities. Strong electrical anisotropy has been observed and it was proven to be caused by geological setting of the site. To handle the anisotropy problem, field data were inverted by a 3D anisotropic tomography algorithm and we could obtain 3D subsurface images, which matches well with geology mapping observations. The inversion results have been used to provide the subsurface model for the safety analysis in rock engineering and we could assure the residents that the apartment has no problem in its safety after the completion of investigation works.