• Title/Summary/Keyword: Build Error

Search Result 266, Processing Time 0.042 seconds

Output Behavior of Build-Up Force Measuring System (BUILD-UP 힘측정 시스템의 출력거동)

  • 강대임;송후근;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2194-2205
    • /
    • 1995
  • In order to reduce the systematic error of a build-up system, we have proposed a new test procedure in which all force transducers in a build-up system are rotated by 90.deg. with a base platen fixed on a force standard machine. The setting positions of force transducers on the output of a build-up system were investigated using an orthogonal array. The effects of the parallelism of a build-up system and of the bending moment sensitivity of a force transducer were considered. The experimental results show that the setting position of the base platen hardly affects the output of the build-up system, but the setting positions of force transducers affects it strongly. It reveals that the new test procedure reduces effectively the systematic error of a build-up system.

An Approach to Recommending of Solutions for Resolving Gradle Build Error (Gradle 빌드 오류 해결을 위한 솔루션 추천 방안)

  • Kang, Mingu;Kim, Taeyoung;Kim, Suntae;Ryu, Duksan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.33-39
    • /
    • 2020
  • Developers spend considerable time manually repairing code that was not built during project construction. If the build fails, it is necessary to understand the failed execution, identify the cause of the failure, and then implement the solution. Build tools such as Gradle have been developed to reduce this effort and automate project construction. However, build tools still do not solve many errors, requiring developers to try to solve build errors. In this study, we propose a solution recommendation method to increase the success rate of Gradle build and reduce the effort required to resolve errors. We provide a way to collect build errors and a way to transition from build error messages to successful builds. In particular, 296 build error messages collected from Github's Java project are classified as solutions, and 89% show that the solution can be applied.

A Study on The Surface Roughness and Area Error at FDM (FDM에서 경사면의 표면과 면적오차법의 관계에 대한 연구)

  • 전재억;정진서;황영모;김수광;김준안;계중읍;하만경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.24-29
    • /
    • 2002
  • In any rapid prototyping process, the layer by layer building process introduces an area error between the staircase and the surface line specified by the computer-aided design model. This affects the dimensional accuracy as well as the surface finish for different part build orientations. This paper describes a methodology for computing the area error for any orientation of the part built by the fused deposition modelling system. This technique can be applied to determine the best build orientation of the part, based on the minimum area error. This technique is verified by comparing the results with the experimental measurements of the area error of the parts built at different orientations.

  • PDF

Improved reactor regulating system logical architecture using genetic algorithm

  • Shim, Hyo-Sub;Jung, Jae-Chun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1696-1710
    • /
    • 2017
  • An improved Reactor Regulating System (RRS) logic architecture, which is combined with genetic algorithm (GA), is implemented in this work. It is devised to provide an optimal solution to the current RRS. The current system works desirably and has contributed to safe and stable nuclear power plant operation. However, during the ascent and descent section of the reactor power, the RRS output reveals a relatively high steady-state error, and the output also carries a considerable level of overshoot. In an attempt to consolidate conservatism and minimize the error, this work proposes to apply GA to RRS and suggests reconfiguring the system. Prior to the use of GA, reverse engineering is implemented to build a Simulink-based RRS model. Reengineering is followed to produce a newly configured RRS to generate an output that has a reduced steady-state error and diminished overshoot level. A full-scope APR1400 simulator is used to examine the dynamic behaviors of RRS and to build the RRS Simulink model.

Optimization of Build Parameters in SLS Process (SLS의 공정 파라미터 최적화에 관한 연구)

  • Heo, Seong-Min;O, Do-Geun;Choe, Gyeong-Hyeon;Lee, Seok-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.769-776
    • /
    • 2000
  • RP(Rapid Prototyping) technology is gaining its popularity in building a prototype in all industries. SLS(Slective Laser Sintering) is one of RP technologies, which is focused on tooling processes as well as three dimension solid model. There are several factors, the length and the cross-sectional area of a part, that have an effect on build setup in SLS process. In this paper, the computation on geometrical relationship is used to slice STL file and to estimate these factors. Based on these values, the build setup parameters such as the heating temperature, the laser power, and the powder cartridge feed rate are determined by neural network approaches. The test results show that the computation time is saved and the neural network approach is able to apply to get the optimal parameters of build process within an acceptable error rate.

Modeling and Analysis of Drift Error in a MSSG with Double Spherical Envelope Surfaces

  • Xin, Chaojun;Cai, Yuanwen;Ren, Yuan;Fan, Yahong
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.356-363
    • /
    • 2016
  • To improve the sensing accuracy of the newly developed magnetically suspended sensitive gyroscope (MSSG), it is necessary to analyze the causes of drift error. This paper build the models of disturbing torques generated by stator assembly errors based on the geometric construction of the MSSG with double spherical envelope surfaces, and further reveals the generation mechanism of the drift error. Then the drift error from a single stator magnetic pole is calculated quantitatively with the established model, and the key factors producing the drift error are further discussed. It is proposed that the main approaches in reducing the drift error are guaranteeing the rotor envelope surface to be an ideal spherical and improving the controlling precision of rotor displacement. The common problems associated in a gyroscope with a spherical rotor can be effectively resolved by the proposed method.

A Comparison of the Effects of Worker-Related Variables on Process Efficiency in a Manufacturing System Simulation

  • Lee, Dongjune;Park, Hyunjoon;Choi, Ahnryul;Mun, Joung H.
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • Purpose: The goal of this study was to build an accurate digital factory that evaluates the performance of a factory using computer simulation. To achieve this goal, we evaluated the effect of worker-related variables on production in a simulation model using comparative analysis of two cases. Methods: The overall work process and worker-related variables were determined and used to build a simulation model. Siemens PLM Software's Plant Simulation was used to build a simulation model. Also, two simulation models were built, where the only difference was the use of the worker-related variable, and the total daily production analyzed and compared in terms of the individual process. Additionally, worker efficiency was evaluated based on worker analysis. Results: When the daily production of the two models were compared, a 0.16% error rate was observed for the model where the worker-related variables were applied and error rate was approximately 5.35% for the model where the worker-related variables were not applied. In addition, the production in the individual processes showed lower error rate in the model that included the worker-related variables than the model where the worker-related variables were not used. Also, among the total of 22 workers, only three workers satisfied the IFRS (International Financial Reporting Standards) suggested worker capacity rate (90%). Conclusions: In the daily total production and individual process production, the model that included the worker-related variables produced results that were closer to the real production values. This result indicates the importance of worker elements as input variables, in regards to building accurate simulation models. Also, as suggested in this study, the model that included the worker-related variables can be utilized to analyze in more detail actual production. The results from this study are expected to be utilized to improve the work process and worker efficiency.

A Symbiotic Evolutionary Design of Error-Correcting Code with Minimal Power Consumption

  • Lee, Hee-Sung;Kim, Eun-Tai
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.799-806
    • /
    • 2008
  • In this paper, a new design for an error correcting code (ECC) is proposed. The design is aimed to build an ECC circuitry with minimal power consumption. The genetic algorithm equipped with the symbiotic mechanism is used to design a power-efficient ECC which provides single-error correction and double-error detection (SEC-DED). We formulate the selection of the parity check matrix into a collection of individual and specialized optimization problems and propose a symbiotic evolution method to search for an ECC with minimal power consumption. Finally, we conduct simulations to demonstrate the effectiveness of the proposed method.

  • PDF

An Estimation on Area Error for Surface Roughness of Rapid Prototype by FDM (주사간격 변화에 의한 응착조형물의 표면예측)

  • Jung, Jin-Seo;Jun, Jae-Uhk;Han, Gu-Sang;Seo, Sang-Ha;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • In any rapid prototyping process, the layer by layer building process introduces an area error between the staircase and the surface line specified by the computer-aided design model. This affects the dimensional accuracy as well as the surface finish for different Road Widths. This paper describes a methodology for computing the area error for any Road Width by the fused deposition modelling system. This technique can be applied to determine the best Road Width of the part, based on the minimum area error. This technique is verified by comparing the results with the experimental measurements of the area error with Road Widths.

  • PDF

A Study on Vibration Characteristics by Gear Transmission Error of Vehicle Transmission (자동차용 변속기의 치합전달오차에 의한 진동특성 연구)

  • 배명호;박노길
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.364-373
    • /
    • 2001
  • The gear whine noise of vehicle transmission is directly correlated tilth the gear transmission error of mating gear The object of this study is to build up the synthesized countermeasure for the reduction of gear whine noire of vehicle transmission by developing the program which can be used to analyze and predict the vibrational characteristics caused by gear transmission error of mating gears of vehicle transmission. The developed mathematical models on the elements of transmission, for example, helical gear pairs, bearings and shafts are used and the modeling of the excitation forces are developed by the gear transmission error of mating gear which is defined by the amount of the elastic deformation of gear tooth & shaft and gear profile & lead errors. The mathematical system model of vehicle transmission developed by the substructure synthesis method Is also verified by the experiments.

  • PDF