• 제목/요약/키워드: Buffing

검색결과 38건 처리시간 0.029초

실리콘 연마에서 패드 버핑 공정이 연마특성에 미치는 영향 (Effect of Pad Buffing process on Material Removal Characteristics in Silicon Chemical Mechanical Polishing)

  • 박기현;정해도;박재홍;마사하루키노시타
    • 한국전기전자재료학회논문지
    • /
    • 제20권4호
    • /
    • pp.303-307
    • /
    • 2007
  • This paper investigated the effect of the pad buffing process on the material removal characteristics and pad stabilization during silicon chemical mechanical polishing. The pads surface were controlled by the buffing process using a buffer made by the sandpaper. The buffing process is based on abrasive machining by using a high speed sandpaper. The controlled pad by the buffing process show less deformation deviation and stable material removal rate during the CMP process. In addition, the controlled pad ensure better uniformity of removal rate than comparative pads. As a result of monitoring, the controlled pad by the buffing process demonstrated constant and stable friction force signals from initial polishing stage. Therefore, the tufting process could control the pad surface to be uniform and improve the performance of the polishing pad.

구리 CMP 후 연마입자 제거에 버프 세정의 효과 (Effect of buffing on particle removal in post-Cu CMP cleaning)

  • 김영민;조한철;정해도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1880-1884
    • /
    • 2008
  • Cleaning is required following CMP (chemical mechanical planarization) to remove particles. The minimization of particle residue is required with each successive technology generation, and the cleaning of wafers becomes more complicated. In copper damascene process for interconnection structure, it utilizes 2-steop CMP consists of Cu CMP and barrier CMP. Such a 2-steps CMP process leaves a lot of abrasive particles on the wafer surface, cleaning is required to remove abrasive particles. In this study, the buffing is performed various conditions as a cleaning process. The buffing process combined mechanical cleaning by friction between a wafer and a buffing pad and chemical cleaning by buffing solution consists of tetramethyl ammonium hydroxide (TMAH)/benzotriazole(BTA).

  • PDF

버핑 로봇의 오프라인 경로 프로그래밍용 5축 마이크로스크라이브 개발 및 응용 (Development of 5-Axis Microscribe System for Off-Line Buffing Robot Path Programming and Its Application)

  • 노태정
    • 한국산학기술학회논문지
    • /
    • 제9권1호
    • /
    • pp.1-8
    • /
    • 2008
  • 신발 버핑공정에서 로봇 메카니즘과 같은 5축 마이크로스크라이브에 의하여 신발창 형상을 따라서 버핑 로봇 경로를 오프라인으로 프로그래밍하는 방법을 제안한다. 개발한 마이크로스크라이브 시스템은 턴테이블이 부착된 5축 로봇링크, 신호처리장치, PC 및 응용 소프트웨어 프로그램으로 구성되어 있다. 많은 조인트를 가진 마이크로스크 라이브를 신발창 표면을 따라 이동시킴으로써 로봇 경로가 만들어진다. 개발시스템은 마이크로스크라이브 암의 회전에 해당되는 엔코더 펄스 값을 환산하며, 이 각도 값을 신호처리장치를 통하여 PC로 전송한다. Denavit-Hartenberg's(D-H) 직접 키네메틱스가 마이크로스크라이브 조인트 각도 값으로서 글로벌 좌표값을 만드는데 사용된다. 마이크로스크라이브의 키네메틱스 문제는 D-H 표현에 의하여 효과적이고 시스템적으로 해결된다. 개발시스템은 D-H식에 의하여 계산된 좌표 값으로서 신발 갑피 위에 버핑 게이지 라인을 그릴 수 있으며, 또한 신발 갑피 위에 각 점들과 그 점에 수직인 벡터와 결합된 2개의 외곽 라인으로서 로봇 경로를 얻는다. 개발시스템을 FMS의 버핑 로봇에 적용함으로써 실제적인 버핑 로봇의 경로를 프로그래밍하는데 효과적으로 사용될 수 있다.

A Study on Development of Off-Line Path Programming for Footwear Buffing Robot

  • Lho, Tae-Jung;Kang, Dong-Joon;Che, Woo-Seung;Kim, Jung-Young;Kim, Min-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1469-1473
    • /
    • 2004
  • We suggest how to program off-line robot path along shoes' outsole shape in the footwear buffing process by a 5-axis microscribe system like robot arms. This microscribe system developed consists a 5-axis robot link with a turn table, signal processing circuit, PC and an application software program. It makes a robot path on the shoe's upper through the movement of a microscribe with many joints. To do this, first it reads 5-encoder's pulse values while a robot arm points a shoes' outsole shape from the initial status. This system developed calculates the encoder pulse values for the robot arm's rotation and transmits the angle pulse values to the PC through a circuit. Then, Denavit-Hartenberg's(D-H) direct kinematics is used to make the global coordinate from robot joint one. The determinant is obtained with kinematics equation and D-H variable representation. To drive the kinematics equation, we have to set up the standard coordinates first. The many links and the more complicated structure cause the difficult kinematics problem to solve in the geometrical way. Thus, we can solve the robot's kinematics problems efficiently and systematically by Denavit-Hartenberg's representation. Finally, with the coordinate values calculated above, it can draw a buffing gauge-line on the upper. Also, it can program off-line robot path on the shoes' upper. We are subjected to obtaining shoes' outline points, which are 2 outlines coupled with the points and the normal vector based on the points. These data is supposed to be transformed into .dxf file to be used for data of automatic buffing robot. This system developed is simulated by using spline curves coupled with each point from dxf file in Autocad. As a result of applying this system to the buffing robot in the flexible footwear manufacturing system, it can be used effectively to program the path of a real buffing robot.

  • PDF

구리 CMP 후 버핑 공정을 이용한 연마 입자 제거 (Particle Removal on Buffing Process After Copper CMP)

  • 신운기;박선준;이현섭;정문기;이영균;이호준;김영민;조한철;주석배;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제24권1호
    • /
    • pp.17-21
    • /
    • 2011
  • Copper (Cu) had been attractive material due to its superior properties comparing to other metals such as aluminum or tungsten and considered as the best metal which can replace them as an interconnect metal in integrated circuits. CMP (Chemical Mechanical Polishing) technology enabled the production of excellent local and global planarization of microelectronic materials, which allow high resolution of photolithography process. Cu CMP is a complex removal process performed by chemical reaction and mechanical abrasion, which can make defects of its own such as a scratch, particle and dishing. The abrasive particles remain on the Cu surface, and become contaminations to make device yield and performance deteriorate. To remove the particle, buffing cleaning method used in post-CMP cleaning and buffing is the one of the most effective physical cleaning process. AE(Acoustic Emission) sensor was used to detect dynamic friction during the buffing process. When polishing is started, the sensor starts to be loaded and produces an electrical charge that is directly proportional to the applied force. Cleaning efficiency of Cu surface were measured by FE-SEM and AFM during the buffing process. The experimental result showed that particles removed with buffing process, it is possible to detect the particle removal efficiency through obtained signal by the AE sensor.

새로운 신발버핑 작업용 로봇 매니퓰레이터 개발 (Development of a new Robot Manipulator for shoes Buffing Operation)

  • 황규득;오주환;최형식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.743-748
    • /
    • 2004
  • In this paper, an analysis on a new robot manipulator developed for the side buffing of the shoes is presented. The robot is composed of five D.O.F. An Analysis on the forward and inverse kinematics was performed. The hardware system including electric wirings, control system, and related system was developed. Also, The teleoperating communication system was developed to shake with other related system Computer programs to track the bonding line of shoes were developed. An user-friendly graphic program was developed using C $^{++}$ language for the users.

  • PDF

반도체용 대구경관의 전해 복합연마에 대한 초정밀 가공 특성연구 (A Study on the characteristics of ultra precision about Buffing and Electropolishing for Semiconductor Large Radius Pipe)

  • 이정훈;이은상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.609-613
    • /
    • 2004
  • On this study, electrochemical polishing is adapted to ultra-fine surface for semiconductor large radius gas-tube. The system which buffing and electrochemical polishing can be performed simultaneously was constructed in connection with developing exclusive system. Based on existing papers and the research of background, electrode gap and electrolyte flow were fixed. Current density and electrochemical precision time were chosen as variables. On this study, it is objected to find optimal precision condition and precision variables on the in-process electrochemical polishing.

  • PDF

새로운 신발 버핑로봇 매니퓰레이터 개발 (Development of a New Buffing Robot Manipulator for Shoes)

  • 황규득;조성덕;최형식
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.76-83
    • /
    • 2006
  • In this paper, an analysis on a new robot manipulator developed for the side buffing of the shoes is presented. The robot manipulator is composed of five degrees of freedom. An analysis on the forward and inverse kinematics was performed. Through the analysis, an analytic solution was derived for the joint angles corresponding to the position and orientation of the tool in the Cartesian coordinates. The hardware system of the robot composed of the control system, input/output interface system, and related electronic system was developed. The communication system was also developed to interact the robot with the related surrounding systems. A graphic user interface(GUI) program including the forward/inverse kinematics, control algorithm, and communication program was developed using visual C++ language.

Post-Cu CMP cleaning에서 연마입자 제거에 buffing 공정이 미치는 영향 (The effect of buffing on particle removal in Post-Cu CMP cleaning)

  • 김영민;조한철;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.537-537
    • /
    • 2008
  • Copper (Cu) has been widely used for interconnection structure in intergrated circuits because of its properties such as a low resistance and high resistance to electromigration compared with aluminuim. Damascene processing for the interconnection structure utilizes 2-steps chemical mechanical polishing(CMP). After polishing, the removal of abrasive particles on the surfaces becomes as important as the polishing process. In the paper, buffing process for the removal of colloidal silica from polished Cu wafer was proposed and demonstrated.

  • PDF