• Title/Summary/Keyword: Buffering levels

검색결과 49건 처리시간 0.04초

수분 조절이 보리와 호밀 silage의 발효특성에 미치는 영향 (The Effect of Moisture Control on Fermentation Characteristics of Barley and Rye Silages)

  • 이종찬;김삼철
    • 농업생명과학연구
    • /
    • 제44권1호
    • /
    • pp.25-32
    • /
    • 2010
  • 본 연구는 수분함량에 따른 보리와 호밀 silage의 발효특성을 평가하기 위하여 수행하였다. 보리와 호밀의 수분함량은 수분첨가 또는 예건을 통해 50%, 65% 및 80%로 조절하였다. 보리 silage의 pH와 Lactate:Acetate 비율은 저수분 처리구 (4.54와 6.23), 호밀 silage에서는 중수분 처리구 (4.33과 9.24)가 가장 높았다. 보리 silage의 propionate 함량은 저수분 처리구가 고수분 처리구에 비해 높았으나, 보리와 호밀 silage의 lactate, 총휘발성지방산 및 acetate 함량은 고수분 처리구가 저수분 처리구에 비해 높았다. 보리 silage의 total-N 함량은 중수분 처리구가 저수분 처리구에 비해 높게 나타났으며, 호밀 silage는 저수분 처리구가 타 처리구에 비해 높았다. 보리 silage의 $NH_3-N$ 함량과 total-N:$NH_3-N$ 비율은 고수분 처리구가 높게 나타났다. 보리와 호밀 silage의 buffering capacity는 수분함량이 높을수록 증가하였으나, pH가 높을수록 감소하였다. 보리와 호밀 silage의 수분 함량은 pH와는 부(-)의 상관관계를 나타내었으나, 휘발성지방산과 $NH_3-N$ 함량 및 total-N중 $NH_3-N$ 비율과는 정 (+)의 상관관계를 나타내었다. 이상의 결과에서 보리와 호밀 silage 제조를 위한 적정 수분함량은 70~80%로 확인되었으며, 사료작물의 수분을 60%까지로 예건하는 것은 silage 품질 저하를 초래할 수 있는 것으로 사료된다.

자연성기반 홍수완충공간 조성에 따른 홍수위 변화 분석 (Analysis of Flood Level Changes by Creating Nature-based Flood Buffering Section)

  • 류지원;지운;김상혁;장은경
    • 대한토목학회논문집
    • /
    • 제43권6호
    • /
    • pp.735-747
    • /
    • 2023
  • 최근 기후변화로 인한 극한홍수 피해가 급증하고 있어 기존의 홍수관리시설만으로는 홍수피해에 제대로 대응하기 어려운 상황에 직면하고 있다. 이에 본 연구는 이러한 문제에 대처하기 위해 홍수 관리의 자연성 기반 접근 방법 중 하나인 제방 후퇴 및 이설의 효과를 분석하였다. 이를 위해 1차원 수치모델 HEC-RAS를 사용하여 100년 빈도 홍수에 대한 홍수위 및 유속 변화 그리고 최대 홍수위 발생 시점에 대해 분석하였다. 식생 조성 등의 자연성기반 홍수완충공간의 조성 환경 특성을 고려한 조도계수의 선택은 홍수위 변화 분석 결과에 민감하기 때문에 엄격한 기준과 과학적 근거를 기반으로 하였다. 분석결과, 자연기반해법의 홍수완충공간 조성에 따른 홍수위 저감 효과는 상류 구간에서 더 크게 나타났으며, 최대 30 cm의 홍수위가 저감되었다. 일부 홍수터 확장구간에서는 국부적으로 홍수위가 상승하는 현상이 나타나며, 유속 변화는 확장된 통수단면적의 비율에 따라 다양하게 나타났다. 이를 통해 제방 후퇴와 홍수터 확장은 홍수 관리의 효과적인 대안으로 고려될 수 있을 것으로 기대되며, 홍수위 변화, 유속 변화 및 최고 수위 발생 시점에 대한 종합적인 설계가 필요할 것으로 판단된다.

A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs

  • Metzler, B.U.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권4호
    • /
    • pp.603-615
    • /
    • 2008
  • Dietary fiber is an inevitable component in pig diets. In non-ruminants, it may influence many physiological processes in the gastrointestinal tract (GIT) such as transit time as well as nutrient digestion and absorption. Moreover, dietary fiber is also the main substrate of intestinal bacteria. The bacterial community structure is largely susceptible to changes in the fiber content of a pig's diet. Indeed, bacterial composition in the lower GIT will adapt to the supply of high levels of dietary fiber by increased growth of bacteria with cellulolytic, pectinolytic and hemicellulolytic activities such as Ruminococcus spp., Bacteroides spp. and Clostridium spp. Furthermore, there is growing evidence for growth promotion of beneficial bacteria, such as lactobacilli and bifidobacteria, by certain types of dietary fiber in the small intestine of pigs. Studies in rats have shown that both phosphorus (P) and calcium (Ca) play an important role in the fermentative activity and growth of the intestinal microbiota. This can be attributed to the significance of P for the bacterial cell metabolism and to the buffering functions of Ca-phosphate in intestinal digesta. Moreover, under P deficient conditions, ruminal NDF degradation as well as VFA and bacterial ATP production are reduced. Similar studies in pigs are scarce but there is some evidence that dietary fiber may influence the ileal and fecal P digestibility as well as P disappearance in the large intestine, probably due to microbial P requirement for fermentation. On the other hand, fermentation of dietary fiber may improve the availability of minerals such as P and Ca which can be subsequently absorbed and/or utilized by the microbiota of the pig's large intestine.

Endoplasmic Reticulum Ca2+ Store: Regulation of Ca2+ Release and Reuptake by Intracellular and Extracellular Ca2+ in Pancreatic Acinar Cells

  • Kang, Yun Kyung;Park, Myoung Kyu
    • Molecules and Cells
    • /
    • 제19권2호
    • /
    • pp.268-278
    • /
    • 2005
  • We investigated the effect of cytosolic and extracellular $Ca^{2+}$ on $Ca^{2+}$ signals in pancreatic acinar cells by measuring $Ca^{2+}$ concentration in the cytosol($[Ca^{2+}]_c$) and in the lumen of the ER($[Ca^{2+}]_{Lu}$). To control buffers and dye in the cytosol, a patch-clamp microelectrode was employed. Acetylcholine released $Ca^{2+}$ mainly from the basolateral ER-rich part of the cell. The rate of $Ca^{2+}$ release from the ER was highly sensitive to the buffering of $[Ca^{2+}]_c$ whereas ER $Ca^{2+}$ refilling was enhanced by supplying free $Ca^{2+}$ to the cytosol with $[Ca^{2+}]_c$ clamped at resting levels with a patch pipette containing 10 mM BAPTA and 2 mM $Ca^{2+}$. Elevation of extracellular $Ca^{2+}$ to 10 mM from 1 mM raised resting $[Ca^{2+}]_c$ slightly and often generated $[Ca^{2+}]_c$ oscillations in single or clustered cells. Although pancreatic acinar cells are reported to have extracellular $Ca^{2+}$-sensing receptors linked to phospholipase C that mobilize $Ca^{2+}$ from the ER, exposure of cells to 10 mM $Ca^{2+}$ did not decrease $[Ca^{2+}]_{Lu}$ but rather raised it. From these findings we conclude that 1) ER $Ca^{2+}$ release is strictly regulated by feedback inhibition of $[Ca^{2+}]_c$, 2) ER $Ca^{2+}$ refilling is determined by the rate of $Ca^{2+}$ influx and occurs mainly in the tiny subplasmalemmal spaces, 3) extracellular $Ca^{2+}$-induced $[Ca^{2+}]_c$ oscillations appear to be triggered not by activation of extracellular $Ca^{2+}$-sensing receptors but by the ER sensitised by elevated $[Ca^{2+}]_c$ and $[Ca^{2+}]_{Lu}$.

Chemical Assessment of Heavy Metal Contamination in Soil

  • Yang, Jae-E.;Choi, Moon-Heon
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1997년도 총회 및 춘계 학술발표회 논문집
    • /
    • pp.8-11
    • /
    • 1997
  • Current methods of evaluating soil contamination by heavy metals rely on analyzing samples for total contents of metals or quantities recovered in various chemical extracting solutions. Results from these approaches provide only an index for evaluation because these methodologies yield values not directly related to bioavailability of soil-borne metals. In addition, even though concentrations of metals may be less than those required to cause toxic effects to biota, they may cause substantial effects on soil chemical parameters that determine soil quality and sustainable productivity. The objective of this research was to characterize effects of Cu or Cd additions on soil solution chemistry of soil quality indices, such as pH, EC, nutrient cation distribution and quantity/intensity relations (buffer capacity). Metals were added at rates ranging from 0 to 400 mg/kg of soil. Soil solution was sequentially extracted from saturated pastes using vacuum. Concentrations of Cu or Cd remaining in soil solutions were very low as compared to those added to the soils, warranting that most of the added metals were recovered as nonavailable (strongly adsorbed) fractions. Adsorption of the added metals released cations into soil solution causing increases of soluble cation contents and thus ionic strength of soil solution. At metal additions of 200~400 mg/kg, EC of soil solution increased to as much as 2~4 dS/m; salinity levels considered high enough to cause detrimental effects on plant production. More divalent cations (Ca+Mg) than monovalent cations (K+Na) were exchanged by Cu or Cd adsorption. The loss of exchangeable nutrient cations decreased long-term nutrient supplying capacity or each soil. At 100 mg/kg or metal loading, the buffering capacity was decreased by 60%. pH of soil solution decreased linearly with increasing metal loading rates, with a decrement of up to 1.3 units at 400 mg Cu/kg addition. Influences of Cu on each of these soil quality parameters were consistently greater than those of Cd. These effects were of a detrimental nature and large enough in most cases to significantly impact soil productivity. It is clear that new protocols are needed for evaluating potential effects of heavy metal loading of soils.

  • PDF

Spent Sulfidic Casutic의 BNR 공정 적용을 위한 최적화 연구 (Study on the Optimization of Spent Sulfidic Caustic Applied for BNR Process)

  • 이재호;주동진;박정진;신춘환
    • 한국환경과학회지
    • /
    • 제20권12호
    • /
    • pp.1617-1624
    • /
    • 2011
  • Caustic (NaOH) solution is used to remove $H_2S$ from hydrocarbon streams in petroleum refining industry, gradually being, so called, spent sulfidic caustic (SSC) which has high levels of $H_2S$ and alkalinity. Thus, SSC can be used as an electron donor and a buffering agent for autotrophic denitrification. As SSC, however, contains some non-biodegradable organics, air stripping was conducted to remove the non-biodegradable organics. As a result, over 93 % of the non-biodegradable organics was removed within 30 min of aeration. Then, $Na_2S_2O_3{\cdot}5H_2O$, methanol and organic matters, which are produced from a biodiesel production plant, were added to reform the air-stripped SSC and their products being referred to new sulfidic caustics (NSCs) I, II and III, respectively. Thereafter, to investigate the effect of these products on the removal of COD and TN, these products were injected to a biological nitrogen removal (BNR) process, resulting in additional 44 % TN removal without noticeable increase in the effluent COD level. Therefore, it can be said that the BNR process is a promising option to treat NSC as demonstrated in this study whose results can be useful for developing resource recovery technologies.

Properties of Spontaneous Activity in Gastric Smooth Muscle

  • Suzuki, H.;Yamamoto, Y.;Hirst, G.D.S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권2호
    • /
    • pp.119-125
    • /
    • 1999
  • Mammalian gastric smooth muscles generate spontaneous rhythmic contractions which are associated with slow oscillatory potentials (slow waves) and spike potentials. Spike potentials are blocked by organic $Ca^{2+}-antagonists,$ indicating that these result from the activation of L-type $Ca^{2+}-channel.$ However, the cellular mechanisms underlying the generation of slow wave remain unclear. Slow waves are insensitive to $Ca^{2+}-antagonists$ but are blocked by metabolic inhibitors or low temperature. Recently it has been suggested that Interstitial Cells of Cajal (ICC) serve as pacemaker cells and a slow wave reflects the coordinated behavior of both ICC and smooth muscle cells. Small segments of circular smooth muscle isolated from antrum of the guinea-pig stomach generated two types of electrical events; irregular small amplitude (1 to 7 mV) of transient depolarization and larger amplitude (20 to 30 mV) of slow depolarization (regenerative potential). Transient depolarization occurred irregularly and membrane depolarization increased their frequency. Regenerative potentials were generated rhythmically and appeared to result from summed transient depolarizations. Spike potentials, sensitive to nifedipine, were generated on the peaks of regenerative potentials. Depolarization of the membrane evoked regenerative potentials with long latencies (1 to 2 s). These potentials had long partial refractory periods (15 to 20 s). They were inhibited by low concentrations of caffeine, perhaps reflecting either depletion of $Ca^{2+}$ from SR or inhibition of InsP3 receptors, by buffering $Ca^{2+}$ to low levels with BAPTA or by depleting $Ca^{2+}$ from SR with CPA. They persisted in the presence of $Ca^{2+}-sensitive$ $Cl^--channel$ blockers, niflumic acid and DIDS or $Co^{2+},$ a non selective $Ca^{2+}-channel$ blocker. These results suggest that spontaneous activity of gastric smooth muscle results from $Ca^{2+}$ release from SR, followed by activation of $Ca^{2+}-dependent$ ion channels other than $Cl^-$ channels, with the release of $Ca^{2+}$ from SR being triggered by membrane depolarization.

  • PDF

Porphyrin Derivatives from a Recombinant Escherichia coli Grown on Chemically Defined Medium

  • Lee, Min Ju;Chun, Se-Jin;Kim, Hye-Jung;Kwon, An Sung;Jun, Soo Youn;Kang, Sang Hyeon;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1653-1658
    • /
    • 2012
  • We have reported previously that a recombinant Escherichia coli co-expresses aminolevulinic acid (ALA) synthase, an NADP-dependent malic enzyme, and a dicarboxylate transporter-produced heme, an iron-chelated porphyrin, in a succinate-containing complex medium. To develop an industrially plausible process, a chemically defined medium was formulated based on M9 minimal medium. Heme synthesis was enhanced by adding sodium bicarbonate, which strengthened the C4 metabolism required for the precursor metabolite, although a pH change discouraged cell growth. Increasing the medium pH buffering capacity (100mM phosphate buffer) and adding sodium bicarbonate enabled the recombinant E. coli to produce heme at rates 60% greater than those in M9 minimal medium. Adding growth factors (1 mg/l thiamin, 0.01 mg/l biotin, 5 mg/l nicotinic acid, 1 mg/l pantothenic acid, and 1.4 mg/l cobalamin) also induced positive heme production effects at levels twice of heme production in M9-based medium. Porphyrin derivatives and heme were found in the chemically defined medium, and their presence was confirmed by liquid chromatography/mass spectroscopy (LC/MS). The formulated medium allowed for the production of $0.6{\mu}M$ heme, $29{\mu}M$ ALA, $0.07{\mu}M$ coproporphyrin I, $0.21{\mu}M$ coproporphyrin III, and $0.23{\mu}M$ uroporphyrin in a 3 L pH-controlled culture.

Soil buffer capacities from the differrent host rocks by the treatment of artificial acid precipitation

  • Min, Ell-Sik;Kim, Myung-Hee;Song, Suck-Hwan
    • 한국동물학회:학술대회논문집
    • /
    • 한국동물학회 1999년도 한국생물과학협회 학술발표대회
    • /
    • pp.150.2-150
    • /
    • 1999
  • To investigate the weathering soil buffering capacities of the artificial acidic precipitation, the weathering soils and their leachate solutions were sampled from the host rocks(granite;GR, rhyolite;RH, gabbro;GA, basalt;BA, two serpentinite;SE1, SE2 and limestone;LI) and analyzed for pH and chemical properties. 1n the soil pH of the GR and RH ,the acidic rocks, were 5.02 and 5.95, respectively. And the GA and BA, basic rocks, were 6.52 and 7.57. The SE1 and SE2 were 8.90 and 8.89. While the LI was 7.84. These results means the typical soil pH properties by host rocks. After the artificial acidic precipitation input 5OOml, the average changes of soil leachate solutions treated by pH levels(pH 5.0, 4.0 and 3.0), were pH 5.73, 5.00 and 4.40. in GR soil, and pH 6.19, 5.99 and 5.57 in RH. GA were pH 6.31, 6.04 and 5.86, BA were pH 7.05, 6.85 and 6.56 and SE1 were pH 8.31, 8.26 and 7.71. SE2 were pH 8.29, 8.24 and 7.96. LI were pH 7.55, 7.46 and 6.79. The soil leachate pHs from volcanic rocks were higher than those from the plutonic rocks and GR soils showed greater response than other soils. With increasing 100ml input-solution, the soil leachate pHs were mainly decreased. Cation concentrations, CEC, EC and total nitrogen concentrations of RH and BA soils, the volcanic rocks, were higher than those of GR and GA soil, the plutonic rocks. On the contrary, Al concentrations of the GR and GA soils were higher than those of RH and BA soils, partly because of high quartz content in GR and Al content in the biotite and plagioclase in GA.

  • PDF

Netflix, Amazon Prime, and YouTube: Comparative Study of Streaming Infrastructure and Strategy

  • Suman, Pandey;Yang-Sae, Moon;Mi-Jung, Choi
    • Journal of Information Processing Systems
    • /
    • 제18권6호
    • /
    • pp.729-740
    • /
    • 2022
  • Netflix, Amazon Prime, and YouTube are the most popular and fastest-growing streaming services globally. It is a matter of great interest for the streaming service providers to preview their service infrastructure and streaming strategy in order to provide new streaming services. Hence, the first part of the paper presents a detailed survey of the Content Distribution Network (CDN) and cloud infrastructure of these service providers. To understand the streaming strategy of these service providers, the second part of the paper deduces a common quality-of-service (QoS) model based on rebuffering time, bitrate, progressive download ratio, and standard deviation of the On-Off cycle. This model is then used to analyze and compare the streaming behaviors of these services. This study concluded that the streaming behaviors of all these services are similar as they all use Dynamic Adaptive Streaming over HTTP (DASH) on top of TCP. However, the amount of data that they download in the buffering state and steady-state vary, resulting in different progressive download ratios, rebuffering levels, and bitrates. The characteristics of their On-Off cycle are also different resulting in different QoS. Hence a thorough adaptive bit rate (ABR) analysis is presented in this paper. The streaming behaviors of these services are tested on different access network bandwidths, ranging from 75 kbps to 30 Mbps. The survey results indicate that Netflix QoS and streaming behavior are significantly consistent followed by Amazon Prime and YouTube. Our approach can be used to compare and contrast the streaming services' strategies and finetune their ABR and flow control mechanisms.