• Title/Summary/Keyword: Buffer-layer

Search Result 1,098, Processing Time 0.024 seconds

Superconducting properties of SiC-buffered-MgB2 tapes

  • Putri, W.B.K.;Kang, B.;Duong, P.V.;Kang, W.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.1-4
    • /
    • 2015
  • Production of $MgB_2$ film on metallic Hastelloy with SiC as the buffer layer was achieved by means of hybrid physical-chemical vapor deposition technique, whereas SiC buffer layers with varied thickness of 170 and 250 nm were fabricated inside a pulsed laser deposition chamber. Superconducting transition temperature and critical current density were verified by transport and magnetic measurement, respectively. With SiC buffer layer, the reduced delaminated area at the interface of $MgB_2$-Hastelloy and the slightly increased $T_c$ of $MgB_2$ tapes were clearly noticed. It was found that the upper critical field, the irreversibility field and the critical current density were reduced when $MgB_2$ tapes were buffered with SiC buffer layer. Clarifying the mechanism of SiC buffer layer in $MgB_2$ tape in affecting the superconducting properties is considerably important for practical applications.

Characteristic Effects of Buffer Layers on Organic Light Emitting Devices

  • Park, Jae-Hoon;Lee, Yong-Soo;Kwak, Yun-Hee;Choi, Jong-Sun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.43-48
    • /
    • 2001
  • The stability and efficiency of organic light emitting devices are the most critical problems to be solved. The devices based on tris-8-(hydroxyquinoline) aluminum ($Alq_3$) and N,N-diphenyl-N,N-bis(3-methylphenyl)-1, 1-biphenyl-4,4-diamine (TPD) were used to study the effects of buffer layers on their characteristics. We have investigated the characteristic effects of CuPc (copper phthalocyanine) and pentacene buffer layers on the device characteristics, the (5${\sim}$20 nm thick) CuPc layers and the (10${\sim}$20 nm thick) pentacene layers were deposited. Efficiency was slightly improved and the turn-on voltages of the devices with the buffer layers were observed to have lower values than those of the devices without the buffer layers. It is believed that this result is attributed to the improvement of hole injection capability through the buffer layers into hole transport layer (HTL). We have also studied the atomic force microscopic images of the TPD layers deposited on the buffer layer and the bare ITO.

  • PDF

Microstructure of GaN films on sapphire{1120} surfaces (사파이어 {1120} 표면에 증착된 GaN 박막의 미세구조)

  • 김유택;박진호;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.377-382
    • /
    • 1998
  • GaN epilayers having good adhesion and quality were obtained directly on the sapphire {1120} substrates by the OMVPE method without introducing a buffer layer at the lower temperature. The preferred orientations of epilayers turned out to be <0002> and at least 4 kinds of epilayers were competitively grown. Slight distortions of lattices caused by lattice mismatches between sapphire and GaN were observed at the lattices within 2~3 nm region from the interface. Accordingly, TEM investigation revealed that GaN epilayers could be grown on sapphire {1120} planes without a buffer layer.

  • PDF

Current-Voltage-Luminance Characteristics of Organic Light-Emitting Diodes with a Variation of PVK Concentration Used as a Buffer Layer (버퍼층으로 사용한 PVK의 농도 변화에 따른 유기 발광 소자의 전압-전류-휘도 특성)

  • Kim, Sang-Keol;Hong, Jin-Woong;Kim, Tae-Wan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.68-72
    • /
    • 2002
  • We have seen the effects of buffer layer in organic light-emitting diodes(OLEDs) using poly(N-vinylcarbazole)(PVK) depending on a concentration of PVK. Polymer PVK buffer layer was made using spin casting technique. Two device structures were fabricated; one is ITO/TPD/$Alq_{3}$/Al as a reference, and the other is ITO/PVK/TPD/$Alq_{3}$/Al to see the effects of buffer layer in organic light-emitting diodes. Current-voltage-luminance characteristics and an external quantum efficiency were measured with a variation of spin-casting rpm speeds and PVK concentration. We have obtained an improvement of external quantum efficiency by a factor of four when the PVK concentration is 0.1wt% is used. The improvement of efficiency is expected due to a function of hole-blocking of PVK in OLEDs.

Preparation and Characterization of Cd-Free Buffer Layer for CIGS by Chemical Bath Deposition (화학습식공정을 이용한 CIGS 태양전지용 Cd-free 버퍼층 박막 제조 및 특성 분석)

  • Hwang, Dae-Kue;Jeon, Dong-Hwan;Sung, Shi-Joon;Kim, Dae-Hwan;Lee, Dong-Ha;Kang, Jin-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.146-148
    • /
    • 2012
  • In our study, we have focused on optimizing good quality of ZnS buffer layer by chemical bath deposition (CBD) from a bath containing $ZnSO_4$, Thiourea and Ammonia in aqueous solution onto CIGS solar cells. The influence of deposition parameter such as pH, deposition temperature, stirring speed played a very important role on transmission, homogeneity, crystalline of ZnS buffer layer. The transmission spectrum showed a good transmission characteristic above 80% invisible spectral region. CIGS thin flim solar cell with ZnS buffer layer has been realized with the efficiency of 14.2%.

  • PDF

Preparation of Cadmium-free Buffer Layers for CIGS Solar Cells (CIGS 태양전지용 Cd-Free 버퍼층 제조)

  • Moon, Jee Hyun;Kim, Ji Hyeon;Yoo, In Sang;Park, Sang Joon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.577-580
    • /
    • 2014
  • Indium hydroxy sulfide ($In(OH)_xS_y$) as a cadmium (Cd)-free buffer layer for $CuInGaSe_2$ (CIGS) solar cells was prepared by the chemical bath deposition (CBD) and the reaction time was optimized. The band gap energy and transmittance data alongside the thickness results from the direct observation with focused ion beam system (FIB) could be a powerful tool for optimizing the conditions. In addition, X-ray diffractometer (XRD), X-ray photoelectron microscopy (XPS), and scanning electron microscope (SEM) were also employed for the layer characterization. The results indicated that the optimum reaction time for $In(OH)_xS_y$ buffer layer deposition by CBD was 20 min at $70^{\circ}C$ under the conditions employed. At the optimum conditions, the buffer layer thickness was near 57 nm and the band gap energy was 2.7 eV. In addition, it was found that there was no XPS peak shift in between the buffer layers deposited on molybdenum (Mo)/glass and that on CIGS layer.

Fabrication and Characterization of High Temperature Superconducting Thin Film on Metallic Substrate Using Laser Ablation (레이저 증착법을 이용한 금속기판상 고온초전도 박막증착 및 특성분석)

  • Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.329-331
    • /
    • 1995
  • Laser ablation was used to fabricate superconducting $YBa_2Cu_3O_{7-x}$ (YBCO) thin films on metallic substrates with an YSZ buffer layer. An ArF excimer laser with an wavelength of 193 nm was used to deposit both YSZ buffer layer and superconducting thin film. The characterizations of thin films were performed and compared. With a 200 nm YSZ buffer layer, c-axis orientation and $T_c$=85 K were obtained for a 200 nm-thick YBCO film.

  • PDF

Effect of buffer layer on the microstructure and magnetic properties of NdFeB thin films (NdFeB 박막의 자기적 특성 및 미세구조에 미치는 buffer layer의 영향)

  • ;;;G. A. Kapustin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.234-235
    • /
    • 2002
  • NdFeB 박막자석은 Sputtering, MBE, Laser ablation법에 의해 제조되고 있으며[1-3] milli-size motor[4], magnetic recording media[5], micro-patterning[3]등에 응용될 수 있다. 최근에는 MEMS(Micro-electro mechanical system)분야에서도 잠재적 응용가능성을 지니고 있는 것으로 알려져 있다. 최근에는 NdFeB 박막 제조 시 자성층의 산화방지 및 자기 특성을 향상을 위하여 buffer layer를 이용한 많은 연구가 이루어지고 있다.[6] (중략)

  • PDF

The Effect of Diffusion Barrier and thin Film Deposition Temperature on Change of Carbon Nanotubes Length (탄소나노튜브 길이 변화에 대한 확산방지층과 박막 증착 온도의 영향)

  • Hong, Soon-kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.248-253
    • /
    • 2017
  • In this study, we investigate the effect of the diffusion barrier and substrate temperature on the length of carbon nanotubes. For synthesizing vertically aligned carbon nanotubes, thermal chemical vapor deposition is used and a substrate with a catalytic layer and a buffer layer is prepared using an e-beam evaporator. The length of the carbon nanotubes synthesized on the catalytic layer/diffusion barrier on the silicon substrate is longer than that without a diffusion barrier because the diffusion barrier prevents generation of silicon carbide from the diffusion of carbon atoms into the silicon substrate. The deposition temperature of the catalyst and alumina are varied from room temperature to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$. On increasing the substrate temperature on depositing the buffer layer on the silicon substrate, shorter carbon nanotubes are obtained owing to the increased bonding force between the buffer layer and silicon substrate. The reason why different lengths of carbon nanotubes are obtained is that the higher bonding force between the buffer layer and the substrate layer prevents uniformity of catalytic islands for synthesizing carbon nanotubes.

Impedance spectroscopy analysis of polymer light emitting diodes with the LiF buffer layer at the cathode/organic interface (LiF 음극 버퍼층을 사용한 폴리머의 효율 향상에 관한 임피던스 분석)

  • Kim, H.M.;Jang, K.S.;Yi, J.;Sohn, Sun-Young;Park, Kuen-Hee;Jung, Dong-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.277-278
    • /
    • 2005
  • Admittance Spectroscopic analysis was applied to study the effect of LiF buffer layer and to model the equivalent circuit for poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV)-based polymer light emitting diodes (PLEDs) with the LiF cathode buffer layer. The single layer device with ITO/MEH-PPV/Al structure can be modeled as a simple parallel combination of resistor and capacitor. Insertion of a LiF layer at the Al/MEH-PPV interface shifts the highest occupied molecular orbital level and the vacuum level of the MEH-PPV layer as a result the barrier height for electron injection at the Al/MEH-PPV interface is reduced. The admittance spectroscopy measurement of the devices with the LiF cathode buffer layer shows reduction in contact resistance ($R_c$), parallel resistance ($R_p$) and increment in parallel capacitance ($C_p$).

  • PDF