• Title/Summary/Keyword: Bud dormancy

Search Result 35, Processing Time 0.019 seconds

Freezing Hardiness According to Dormancy Level and Low Temperature in Persimmon (Diospyros kaki) (감나무의 휴면정도 및 저온에 따른 내동성 비교)

  • Kim, Ho-Cheol;Bae, Kang-Soon;Bae, Jong-Hyang;Kim, Tae-Choon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.269-273
    • /
    • 2007
  • Freezing hardiness of winter bud and branch according to dormancy level and low temperature, in persimmon (Diospyros kaki) cultivars, was investigated by electrolyte leaching rate, triphenyltetrazolium chloride (TTC) test, and sprouting. Electrolyte leaching rate was lowest in branch of 20th January and was highest in the 20th March. The electrolyte leaching rate of 'Fuyu' and 'Cheongdobansi' was high in the 20th January and was low in the 20th February, but 'Uenishiwase' and 'Nishimurawase' was opposed to that. 'Hachiva' was the middle level in the cultivars. Absence rate by TTC test was highest in the 20th January and was low in the others. The 20th March had a great decrease in $-10^{\circ}C$ treatment. The absence rate of 'Fuyu' and 'Uenishiwase' was low in the 20th January and March and was high in the 20th February. 'Nishimurawase' and 'Hachiya' had a high level irrespective of dormancy level. Sprouting was highest in the 20th February and was lowest in 20th March. Most cultivars were not sprout in $-20^{\circ}C$ treatment and 'Fuyu', 'Nishimurawase' and 'Cheongdobansi' was a little high level irrespective of dormancy level. 'Hachiya' was only high in the 20th January. Thus, freezing hardiness of persimmon was very weak low temperature after dormancy breaking and was not different between astringent and non-astringent persimmon.

Effect of Growth Regulators on the Dormancy of Mulberry (Morus alba L.) Winter Buds in Taegu, Korea (대구지방에서의 뽕나무 휴면타파를 위한 생장조절제 처리 효과)

  • EL FEZAZI Mohammed
    • Journal of Sericultural and Entomological Science
    • /
    • v.30 no.2
    • /
    • pp.75-83
    • /
    • 1988
  • These experiments were carried out to define the rest period of mulberry by treating growth regulators in Taegu, Korea. Results obtained were as follows: It was recognized that the depth of rest in Taegu, Korea, was not deeper than that in Tokyo and Kagoshima, Japan. The rest of mulberry was begun at the end of September, subsequently became deeper through the first October into the late October and then turned gradually into quiescence by the beginning of November. Buds sprayed by gibberellic acid ($GA_3$) 10ppm and urea 0.5% were promoted to sprout, while naphthalene acetic acid (NAA) 0.02% inhibited strongly bud sprouting and abscisic acid (ABA) 20ppm had no effect on the rest of mulberry. Gibberellic acid 10ppm enhanced the rate of green color of bud after incubation for 10 days at $30^{\circ}C$. By the portion of mulberry stems, the depth of rest was different that the middle buds were less dormant than those lower. The optimal time required for the mulberry winter bud break is 15 days incubation at $30^{\circ}C$ as treated with $GA_3$.

  • PDF

An Agrometeorological Reference Index for Projecting Weather-Related Crop Risk under Climate Change Scenario (농작물의 기상재해 발생위험 판정기준 설정 및 지구 온난화에 따른 기준기상위험의 변화 전망)

  • Kim, Dae-jun;Kim, Jin-hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.3
    • /
    • pp.162-169
    • /
    • 2016
  • The agrometeorological reference index means 'the agrometeorological damage possibility' or the possibility of the normal year climate condition to damage the crop cultivation in a certain region. It is a reference used to compare the cultivation risk of a crop by region. The global climate warming is expected to increase the winter temperature. At the same time, the frequency of extreme weather events will also increase. Therefore, people pay attention to the potential of low temperature-induced damages (e.g., frost damage and injury) to fruit trees under the future climate condition. However, simple damage projection based on climate conditions does not help the climate change adaptation in the practical aspect because the climate change affects the phenology of fruit trees as well. This study predicted the phenology of the pear, peach, and apple trees by using the climate change scenarios of major regions. Furthermore, low temperature induced agrometeorological reference indices were calculated based on the effects of temperature on each plant growth stage to predict the damage possibility. It was predicted that the breaking rest would delay more in the future while the bud-burst date and flowering date will be earlier. In Daegu, Jeonju, and Mokpo, the breaking rest delayed more as time passed. The bud-burst date and flowering date of Seoul and Incheon regions were later than other regions. Seoul and Incheon showed a similar pattern, while Daegu and Jeonju revealed a similar pattern. Busan and Mokpo also showed a similar pattern. All regions were safe from the frost damage during the dormancy period. However, plants were vulnerable to frost damage between the breaking rest and the bud-burst period. Regions showed different frost damage patterns between the bud-burst period and the flowering period. During the bud-burst and flowering period, the risk level decreased in general, although the risk of some areas tended to increase.

Source-Sink Relations in North American Ginseng Seedlings as Influenced by Leaflet Removal

  • T. A., John
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.337-340
    • /
    • 2008
  • Seedlings of North American ginseng (Panax quinquefolius L.) were grown to full canopy establishment and then leaflet or leaf removal at different times applied to determine the effects on plant growth and performance. Leaf removal at 47, 57, 69 and 78 days after seeding resulted in 82.1, 59.8, 41.3 and 29.8% reduction, respectively, in root dry matter (economic yield) ; this indicates that leaf removal during the early root growth period causes greatest reduction in root yield. Removal of 1, 2, and 3 leaflets at 42, 52, 62 and 70 days from seeding reduced root weight at harvest (80 days from seeding) linearly, particularly at earlier removal dates. The perennating bud formed on all roots and was not influenced by treatment. This would suggest that if leaf loss occurs after canopy establishment the plant will re-grow the next year after the obligatory dormancy period.

Forcing of Herbaceous peony(Paeonia lactiflora PALLAS.) (작약(芍藥)의 개화촉진(開花促進)에 관(關)한 연구(硏究))

  • Kim, Hyun-Tae;Park, Yong-Jin;Seong, Jae-Duek;Suh, Hyung-Soo;Hahn, Sang-Jung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.3
    • /
    • pp.187-192
    • /
    • 1996
  • This study was investigated to know about the stages of flower bud development and the effects of natural and artificial cold treatment on flowering of herbaceous peony. Developing buds of Paeonja lactㅑflora Pall. var. Taebaek were observed since Jun. 17 and peony plants were forced since Nov. 27 in the green house with two weeks interval, and other plants were forced after cold treatment in $5^{\circ}C$ for 1, 2, 4, 6weeks. Differentiation of vegetable part in peony buds was started in early June, and floral part was differentiated in September and their differentiation was continued to shooting in early spring. Buds of peony were sprouted and flowered when it was forced on Dec. 4. Days to shooting were decreased with delay of forcing time from early to late of December, significantly. Two weeks for cold treatment were enough to break dormancy of peony and days to shooting of the cold treated were significantly shorter than the untreated in the same forcing times

  • PDF

In vitro grown thickened taproots, a new type of soil transplanting source in Panax ginseng

  • Kim, Jong Youn;Kim, Dong Hwi;Kim, Young Chang;Kim, Kee Hong;Han, Jung Yeon;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.409-414
    • /
    • 2016
  • Background: The low survival rate of in vitro regenerated Panax ginseng plantlets after transfer to soil is the main obstacle for their successful micropropagation and molecular breeding. In most cases, young plantlets converted from somatic embryos are transferred to soil. Methods: In vitro thickened taproots, which were produced after prolonged culture of ginseng plantlets, were transferred to soil. Results: Taproot thickening of plantlets occurred near hypocotyl and primary roots. Elevated concentration of sucrose in the medium stimulated the root thickening of plantlets. Senescence of shoots occurred following the prolonged culture of plantlets. Once the leaves of plantlets senesced, the buds on taproots developed a dormant tendency. Gibberellic acid treatment was required for dormancy breaking of the buds. Analysis of endogenous abscisic acid revealed that the content of abscisic acid in taproots with senescent shoots was comparatively higher than that of taproots with green shoots. Thickened taproots were transferred to soil, followed by exposure to gibberellic acid or a cold temperature of $2^{\circ}C$ for 4 mo. Cold treatment of roots at $2^{\circ}C$ for 4 mo resulted in bud sprouting in 84% of roots. Spraying of 100 mg/L gibberellic acid also induced the bud sprouting in 81% roots. Conclusion: Soil transfer of dormant taproots of P. ginseng has advantages since they do not require an acclimatization procedure, humidity control of plants, and photoautotrophic growth, and a high soil survival rate was attained.

Identification and Characterization of Xanthomonas arboricola pv. juglandis Causing Bacterial Blight of Walnuts in Korea

  • Kim, Hyun Sup;Cheon, Wonsu;Lee, Younmi;Kwon, Hyeok-Tae;Seo, Sang-Tae;Balaraju, Kotnala;Jeon, Yongho
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.137-151
    • /
    • 2021
  • The present study describes the bacterial blight of walnut, caused by Xanthomonas arboricola pv. juglandis (Xaj) in the northern Gyeongbuk province, Korea. Disease symptoms that appear very similar to anthracnose symptoms were observed in walnut trees in June 2016. Pathogens were isolated from disease infected leaves, fruits, shoots, bud, flower bud of walnut, and cultured onto yeast dextrose carbonate agar plates. Isolated bacteria with bacterial blight symptoms were characterized for their nutrient utilization profiles using Biolog GN2 and Vitek 2. In addition, isolates were subjected to physiological, biochemical, and morphological characterizations. Furthermore, isolates were identified using 16S rDNA sequence analysis, and multi-locus sequence analysis using atpD, dnaK, efp, and rpoD. To confirm pathogenicity, leaves, fruits, and stems of 3-year-old walnut plants were inoculated with bacterial pathogen suspensions as a foliar spray. One week after inoculation, the gray spots on leaves and yellow halos around the spots were developed. Fruits and stems showed browning symptoms. The pathogen Xaj was re-isolated from all symptomatic tissues to fulfill Koch's postulates, while symptoms were not appeared on control plants. On the other hand, the symptoms were very similar to the symptoms of anthracnose caused by Colletotrichum gloeosporioides. When walnut plants were inoculated with combined pathogens of Xaj and C. gloeosporioides, disease symptoms were greater in comparison with when inoculated alone. Xaj population size was more in the month of April than March due to their dormancy in March, and sensitive to antibiotics such as oxytetracycline and streptomycin, while resistant to copper sulfate.

Feasibility of Stochastic Weather Data as an Input to Plant Phenology Models (식물계절모형 입력자료로서 확률추정 기상자료의 이용 가능성)

  • Kim, Dae-Jun;Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • Daily temperature data produced by harmonic analysis of monthly climate summary have been used as an input to plant phenology model. This study was carried out to evaluate the performance of the harmonic based daily temperature data in prediction of major phenological developments and to apply the results in improving decision support for agricultural production in relation to the climate change scenarios. Daily maximum and minimum temperature data for a climatological normal year (Jan. 1 to Dec. 31, 1971-2000) were produced by harmonic analysis of the monthly climate means for Seoul weather station. The data were used as inputs to a thermal time - based phenology model to predict dormancy, budburst, and flowering of Japanese cherry in Seoul. Daily temperature measurements at Seoul station from 1971 to 2000 were used to run the same model and the results were compared with the harmonic data case. Leaving no information on annual variation aside, the harmonic based simulation showed 25 days earlier release from endodormancy, 57 days longer period for maximum cold tolerance, delayed budburst and flowering by 14 and 13 days, respectively, compared with the simulation based on the observed data. As an alternative to the harmonic data, 30 years daily temperature data were generated by a stochastic process (SIMMETEO + WGEN) using climatic summary of Seoul station for 1971-2000. When these data were used to simulate major phenology of Japanese cherry for 30 years, deviations from the results using observed data were much less than the harmonic data case: 6 days earlier dormancy release, 10 days reduction in maximum cold tolerance period, only 3 and 2 days delay in budburst and flowering, respectively. Inter-annual variation in phenological developments was also in accordance with the observed data. If stochastically generated temperature data could be used in agroclimatic mapping and zoning, more reliable and practical aids will be available to climate change adaptation policy or decision makers.

Regrowth of Buds and Flower Bud Formation in Kiwifruit as Affected by Early Defoliation (조기낙엽에 따른 참다래(골드러쉬) 무착과 유목 액아의 발아와 착화)

  • Kwack, Yong-Bum;Kim, Hong Lim;Chae, Won-Byoung;Lee, Jae Han;Lee, Eung Ho;Kim, Jin Gook;Lee, Yong Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.201-206
    • /
    • 2013
  • BACKGROUND: Kiwifruit, which was introduced to Korea in late 1970s, is a warm-temperate fruit tree, whose leaves are easily damaged by wind because of their large size. To produce high quality fruits, efficient windbreak is necessary to protect leaves until harvest. In Korea, typhoons from July onwards usually influence the production of kiwifruit. Damages from typhoons include low fruit quality in the current year and low flowering ratio the following year. This study was conducted to investigate the effect of early defoliation of kiwifruit vines from July to October on the regrowth of shoot axillary buds the current year and bud break and flowering the following year. METHODS AND RESULTS: Scions of kiwifruit cultivar 'Goldrush' were veneer grafted onto five-year-old Actinidia deliciosa rootstocks, planted in Wagner pots (13L) and grown in a rain shelter. Kiwifruit leaves in the proximity of leaf stalk were cut by lopping shears to simulate mechanical damage from typhoon since only leaf stalks were left when kiwifruit vines were damaged by typhoons. Kiwifruit vines were defoliated from July 15 to October 14 with one monthintervals and degrees of defoliation were 0, 25, 50, 75 and 100%. All experiments were conducted in the rain shelter and replicated at least five times. Defoliation in July 15 resulted in a high regrowth ratio of 20-40% regardless of degree of defoliation but that in August 16 showed only 5.8% of regrowth ratio in the no defoliation treatment; however, more than 25% of defoliation in August 16 showed 17-23% of regrowth ratio. In September 15, regrowth ratio decreased further to less than 10% in all treatments and no regrowth was observed in October 14. Percent bud break of all defoliation treatments were not significant in comparison to 64.7% in no defoliation except for 42.1% and 42.9% in 100% defoliation in July 15 and August 16, respectively. Floral shoot in the no defoliation treatment was 70.2% and defoliation of 50% or less resulted in the same or increased floral shoot ratio in July 15, August 16, and September 15; however, defoliation in October 14 showed no difference in all treatments. In flower number per floral shoot, 2-3 flowers appeared in no defoliation and only 1 flower was observed when the vines were defoliated more than 50% in July 15 and September 15. In October 14, contrary to the floral shoot ratio, flower number decreased with increased defoliation. CONCLUSION(S): Therefore, it is suggested that dormancy of 'Goldrush' axillary buds, was started in August and completed in October. The effect of defoliation on bud break of axillary buds the following year was insignificant, except for 100% defoliation in July 15 and August 16. From July 15 to September 15, floral bud ratio was significantly reduced when more than 50% of leaves were defoliated compared to no defoliation. Also, the number of flowers per flower-bearing shoot the following year decreased by less than 50% when compared to no defoliation, and this decrease was more prominent in September 15 than July 15 and August 16.

Climate Change Impact on the Flowering Season of Japanese Cherry (Prunus serrulata var. spontanea) in Korea during 1941-2100 (기후변화에 따른 벚꽃 개화일의 시공간 변이)

  • Yun Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.68-76
    • /
    • 2006
  • A thermal time-based two-step phenological model was used to project flowering dates of Japanese cherry in South Korea from 1941 to 2100. The model consists of two sequential periods: the rest period described by chilling requirement and the forcing period described by heating requirement. Daily maximum and minimum temperature are used to calculate daily chill units until a pre-determined chilling requirement for rest release is met. After the projected rest release date, daily heat units (growing degree days) are accumulated until a pre-determined heating requirement for flowering is achieved. Model calculations using daily temperature data at 18 synoptic stations during 1955-2004 were compared with the observed blooming dates and resulted in 3.9 days mean absolute error, 5.1 days root mean squared error, and a correlation coefficient of 0.86. Considering that the phonology observation has never been fully standardized in Korea, this result seems reasonable. Gridded data sets of daily maximum and minimum temperature with a 270 m grid spacing were prepared for the climatological years 1941-1970 and 1971-2000 from observations at 56 synoptic stations by using a spatial interpolation scheme for correcting urban heat island effect as well as elevation effect. A 25km-resolution temperature data set covering the Korean Peninsula, prepared by the Meteorological Research Institute of Korea Meteorological Administration under the condition of Inter-governmental Panel on Climate Change-Special Report on Emission Scenarios A2, was converted to 270 m gridded data for the climatological years 2011-2040, 2041-2070 and 2071-2100. The model was run by the gridded daily maximum and minimum temperature data sets, each representing a climatological normal year for 1941-1970, 1971-2000, 2011-2040, 2041-2070, and 2071-2100. According to the model calculation, the spatially averaged flowering date for the 1971-2000 normal is shorter than that for 1941-1970 by 5.2 days. Compared with the current normal (1971-2000), flowering of Japanese cherry is expected to be earlier by 9, 21, and 29 days in the future normal years 2011-2040, 2041-2070, and 2071-2100, respectively. Southern coastal areas might experience springs with incomplete or even no Japanese cherry flowering caused by insufficient chilling for breaking bud dormancy.