• Title/Summary/Keyword: Buckwheat sprouts

Search Result 26, Processing Time 0.021 seconds

Nutritional Changes of Buckwheat During Germination (발아중 메밀의 영양성분의 변화)

  • Lee, Eun-Hye;Kim, Chul-Jai
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.1
    • /
    • pp.121-129
    • /
    • 2008
  • To produce buckwheat sprouts, buckwheats were germinated at $23{\pm}2^{\circ}C$ up to 8 days in total darkness. In proximate analysis, moisture content increased from 13.87% of buckwheat groats to 93.75% of buckwheat sprouts on the 8th day of germination. On dry weight basis, lipid and ash contents increased like as protein content increased from 13.45% to 21.82% while carbohydrate content decreased due to enzyme hydrolysis. Amino acids were rich in glutamic acid, aspartic acids, and lysine, and also the ratio of the essential amino acids to total amino acids increased from 26.84% to 36.84%. Vitamin C did not exist in buckwheat groats but its content has continued to increase as far as 99.56 mg/100 g buckwheat sprouts. Rutin continued to increase by HPLC analysis from 4.71 mg/100 g buckwheat groats to 1,524 mg/100 g buckwheat sprouts. In analysis of organic acids, oxalic, maleic, and citric acids were commonly found in buckwheat sprouts. Fagopyrin was found almost none in buckwheat sprouts. In conclusion, the conversion of buckwheat seeds into sprouts through germination in darkness results in physically different final product with nutritional changes such as higher content of rutin, generation of vitamin C, abundance of the essential amino acids, and the existence of fagopyrin on very little.

The Influence of Adding Buckwheat Sprouts on the Fermentation Characteristics of Yakju (메밀싹 첨가가 약주 발효특성에 미치는 영향)

  • Lee, Jin-Ok;Kim, Chul-Jai
    • Journal of the Korean Society of Food Culture
    • /
    • v.26 no.1
    • /
    • pp.72-79
    • /
    • 2011
  • The purpose of this study was to investigate the fermentation characteristics of Yakju using fresh sprouts from common buckwheat, a Daisan cultivar, and a tartary buckwheat Daikwan 3-3 cultivar to develop a functional Yakju, which is a traditional Korean liquor. As fermentation time increased, alcohol concentration and total sugar content (expressed as Brix degrees) increased, whereas reducing sugar content decreased. In particular, alcohol formation capability was maximized from the fourth to the seventh days of the second mashing stage during the fermentation procedure, which corresponded to the abrupt rise in mashing body temperature. The pH increased slightly when the titratable acidity was kept from increasing as fermentation proceeded. Quercetin and rutin were not present in the control group but their presence in Yakju with added buckwheat sprouts continuously increased with an increase in the fermentation period. Quercetin and rutin contents were higher in the Yakju with added Daikwan3-3 buckwheat sprouts than Yakju with added Daisan buckwheat sprouts. In conclusion, adding buckwheat sprouts improved Yakju quality during fermentation. Particularly, Yakju with added Daikwan3-3 buckwheat sprouts had superior fermentation characteristics and quality.

Lactobacillus bulgaricus Fermentation Characteristics of Yogurt with added Buckwheat Sprout (Lactobacillus bulgaricus를 이용한 메밀싹 첨가 요구르트의 발효특성)

  • Kang, Ha-Ni;Kim, Chul-Jai
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.1
    • /
    • pp.90-95
    • /
    • 2009
  • The principal objective of this study was to investigate the influence of buckwheat sprouts on the acid production and growth of lactic acid bacteria in to which 5 and 10%(w/v) buckwheat sprouts was added, followed by fermentation with Lactobacillus bulgaricus. In yogurt to which 5 and 10% buckwheat sprouts was added, pH was lower and titratable acidity was higher than those of the control. It was also noted significant changes in the number of viable cell counts with differing amounts of added buckwheat sprouts until 12 hours. When the yogurt samples were stored for 12 days at $4^{\circ}C$, the pH and titratable acidity of the yogurt to which 5 and 10% buckwheat sprouts was added were maintained at lower and higher than control levels, respectively. The highest number of viable cell counts was found in the yogurt to which 5% buckwheat sprouts was added. Rutin content was reduced via lactic acid fermentation, but quercetin content increased significantly in the yogurt with added buckwheat sprouts. It may be that the glycosidic bonds connected to rutin were hydrolyzed during fermentation by lactic acid bacteria. The total phenol compound content of the yogurt samples also increased after fermentation. The antioxidative activity of yogurt to which 10% buckwheat sprouts was added was shown to have a 60.95% free radical scavenging effect, which was the highest among all yogurt samples evaluated.

Changes of Antioxidant Activity as affected by cultivation period in Buckwheat (Fagopyrum species) Sprouts (재배기간에 따른 쓴메밀(Fagopyrum tataricum Gaertner)싹의 항산화 활성 및 생리활성 평가)

  • Kim, Hyun Young;Woo, So-Yeun;Seo, Woo Duck;Lee, Mi Ja
    • Journal of the Korean Society of Food Culture
    • /
    • v.35 no.6
    • /
    • pp.590-596
    • /
    • 2020
  • Buckwheat (Fagopyrum species) has long been an excellent functional food. Besides, buckwheat sprouts contain various functional substances. In this study, we investigated the antioxidant activity of buckwheat sprouts in the context of cultivars harvested after different cultivation periods (0, 3, 5, 7, 9, 13, and 15 days after planting). Buckwheat sprouts were cultivated at 25℃ for up to 15 days and then extracted with ethanol. Antioxidant components were then extracted from sprouts and leaves using a freeze dryer. The total polyphenolic content, flavonoid content, and antioxidant activity were then analyzed. The total polyphenol content increased from 32.26 mg GA eq/100 g for raw buckwheat to 114.75 mg GA eq/100 g after 7 days of cultivation. Also, the flavonoid content increased from 20.61 mg catechin eq/100 g (0 days) to 56.54 mg/g after 9 days of cultivation. The DPPH radical scavenging activity (concentration of extract at 0.25 mg/mL) increased from 7.89% at day 0 to 53.48% after 9 days of cultivation. Additionally, the ABTS radical scavenging activity increased from 10.26% at day 0 to 32.89% after 7 days of cultivation; of note, the activity decreased afterward. These results suggest that the best buckwheat sprouts with higher biological activities are those cultivated for 7-9 days. For a complete understanding of the potential of buckwheat sprouts as functional foods, we plan to further analyze their antioxidant activity in the future.

Rutin, Catechin Derivatives, and Chemical Components of Tartary Buckwheat (Fagopyrum tataricum Gaertn.) Sprouts

  • Lee, Hee-Sun;Park, Cheol-Ho;Park, Byoung-Jae;Kwon, Soon-Mi;Chang, Kwang-Jin;Kim, Sun-Lim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.277-282
    • /
    • 2006
  • The aim of this study was to develop the tartary buckwheat (Fagopyrum tataricum Gaertn.) sprouts and to clarify the biological and chemical characteristics of the sprouts. At 7 days after seeding, hypocotyls length and thickness, and root length of tartary buckwheat sprouts were 137 cm, 1.4 mm, and 12.6 cm, respectively. Fresh weight, dry weight, and moisture contents of an individual sprout at 7 days after seeding were 202 mg, 5.4 mg, and 95.3%, respectively. Protein content in tartary buckwheat sprouts was 23.0% which relatively higher than that of seeds, while lipid and ash contents were 3.5% and 5.3%. Among 7 minerals, the content of phosphorus showed the highest level (1,383.5 mg/100 g), while the contents of sodium and potassium were 1,197.5 mg/100 g and 1,106 mg/100 g, respectively. The contents of other minerals were Mg (795.5 mg/100 g), Ca (149 mg/100 g), Zn (16.4 mg/ 100 g), and Fe (14.7 mg/100 g). The rutin content of tatary buckwheat sprouts including root parts was the highest (5644.9 mg/100 g) at 7 days after seeding. The concentration of catechin derivatives in tartary buckwheat sprouts was high in order of catechin (59 mg/100 g), epicatechin gallate (47 mg/100 g), and epicatechin (14 mg/100 g).

Effect of Temperature, Deep Sea Water and Seed Quality on Growth of Buckwheat Sprouts

  • Xoxiong, Briatia;Chang, Kwang-Jin;Ahn, Chul-Hyun;Lim, Yong-Sub;Kim, Yeon-Bok;Park, Sang-Un;Park, Byoung-Jae;Sung, In-Je;Park, Cheol-Ho
    • Korean Journal of Plant Resources
    • /
    • v.24 no.6
    • /
    • pp.724-728
    • /
    • 2011
  • With both common and Tartary buckwheat species, this study was aimed at producing new commercially useful bio-materials with higher nutritional and medicinal value due to higher components for health promotion and diseases care. In common buckwheat sprouts, it was found that root length at $20^{\circ}C$ was longer (5.93 cm) than at 25 and $30^{\circ}C$, whereas the hypocotyls length, fresh weight of each sprout, and whole fresh weight showed the highest value at $30^{\circ}C$. For Tartary buckwheat, the root length, hypocotyl length and fresh weight of each sprout and whole fresh weight were also the highest at $30^{\circ}C$. Common buckwheat (Suwon No.1) and Tartary buckwheat (KW45) sprouts cultured at $20^{\circ}C$ showed that hypocotyl length, fresh weight of each sprout, and whole fresh weight in the control were higher than those sprouts treated with 5% and 10% deep sea water (DSW), while the sprouts cultured at $30^{\circ}C$ showed were significantly longer hypocotyls than the control or 5% DSW treatment.

Microbiological Characterization and Chlorine Treatment of Buckwheat Sprouts (메밀 새싹채소의 주요 내재미생물 분석 및 염소처리에 따른 품질변화)

  • Lee, Hyun-Hee;Hong, Seok-In;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.452-457
    • /
    • 2009
  • In order to secure microbiological safety and quality of commercial vegetable sprouts, buckwheat seeds and sprouts were investigated for their microbiological flora and for the effect of chlorine treatment on quality. Microbiological analyses showed that major inherent bacteria including Enterobacter, Sphingomonas, and Klebsiella were found in commercial buckwheat sprouts with a population size ranging from $10^5$ to $10^7$ CFU/g. In addition, buckwheat seeds had a similar microbial flora to sprouts. Foodborne pathogenic bacteria such as Escherichia coli O157:H7, Staphylococcus aureus, Salmonella Typhimurium, and Listeria monocytogenes were not detected in the sprout or in the seed samples. Chlorine treatment with 50-150 ppm sodium hypochlorite noticeably reduced viable bacteria cell counts of the sprouts by about 1 log. However, no significant difference was observed among the different chlorine concentrations. After storage for 7 days at $5^{\circ}C$, the sprouts treated with 100-150 ppm chlorine showed higher sensory scores in visual quality than the others (p<0.05). The results indicated that proper pretreatment, such as dipping in chlorinated water, could confer a beneficial effect on the microbiological safety and visual quality of buckwheat sprouts.

Effect of Single or Mixed Culture of Lactobacillus bulgaricus and Streptococcus thermophilus on Fermentation Characteristics of Buckwheat Sprout-added Yoghurt (Lactobacillus bulgaricus 와 Streptococcus thermophilus 의 단독 또는 혼합배양한 메밀싹 첨가 요구르트의 발효 특성)

  • Kang, Ha-Ni;Kim, Chul-Jai
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.1
    • /
    • pp.76-81
    • /
    • 2010
  • This study was conducted to evaluate the influence of Lactobacillus bulgaricus and/or Sterptococcus thermophilus on the fermentation of yoghurt containing 5% (w/v) buckwheat sprouts. The results revealed that after 12 hours of fermentation the appropriate pH, titratable acidity and number of viable cells were attained. At that time, the rutin content of the buckwheat sprout-added yoghurt prepared by the mixed culture method was not changed, but the quercetin content increased greatly. Conversely, the rutin content of yoghurt that only contained Streptococcus thermophilus was decreased while the quercetin content was increased. The total phenol contents as well as the DPPH radical scavenging activities of both the mixed culture and Streptococcus thermophilus yoghurt did not differ significantly. Taken together, the results revealed that the use of a mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus during the preparation of buchwheat sprout-added yoghurt was desirable due to the decrease in pH and increase in titratable acidity and viable cells that occurred after 12 hr of fermentation. Moreover, phytochemicals in buckwheat sprouts such as rutin, quercetin and phenol compounds were comparatively increased during fermentation and influenced the antioxidant activity in buckwheat sprout-added yoghurt.

Components and Biological Effects of Fermented Extract from Tartary Buckwheat Sprouts (타타리메밀싹 발효추출물의 영양성분 및 생리활성)

  • Chang, Kwang-Jin;Seo, Geon-Sik;Kim, Yang-Sik;Huang, Dae-Sun;Park, Jong-In;Park, Jeong-Ja;Lim, Yong-Sup;Park, Byoung-Jae;Park, Cheol-Ho;Lee, Man-Hee
    • Korean Journal of Plant Resources
    • /
    • v.23 no.2
    • /
    • pp.131-137
    • /
    • 2010
  • Tartary buckwheat has potential as a source of functional food because it contains a number of bioactive compounds such as rutin, catechin and so on. This study was conducted to determine the possibility of development of processed products extracted from sugar-treated sprouts of tartary buckwheat. By using undiluted solution extracted from sprouts of tartary buckwheat, we analyzed their nutrition components and did in vivo experiment to find out pharmaceutical effects. In an experiment using mice, we administered various concentration of buckwheat to induced diabetic mellitus mice for 1 weeks. As a result, the fermented extract from buckwheat sprouts effected finely on lowering blood sugar and decreased LDL-cholesterol and total lipid level but increased HDL-cholesterol level.

Effect of LED Light Strength for Enhancing Rutin Content in Tatary Buckwheat Sprouts and Antioxidant Activity (타타리메밀싹의 루틴 함량 향상을 위한 LED 광량 효과와 항산화 활성)

  • Shin, Jiyoung;Kang, Min-jae;Kim, Hyeon-jeong;Park, Ji-In;Yang, Ji-young;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.977-984
    • /
    • 2018
  • This study aimed to enhance rutin contents by controlling germination condition for manufacturing buckwheat sprouts. Two kinds of buckwheat, a common buckwheat (Fagopyrum esculentum Moench) and a tartary buckwheat (Fagopyrum tataricum Gaertner) were used. By comparing the rutin content of two buckwheats, tartary buckwheat was 487 ppm, about 36 times higher than common buckwheat. Both common buckwheat and tartary buckwheat which germinated and grew under the light had higher rutin content relatively. In case of tartary buckwheat, rutin content of over 10 cm sprout was 4,579 ppm (without the light), and 5,160 ppm (with the light). Furthermore, tartary buckwheat was germinated and grew under different light strengths from 2,000 to 22,000 Lux. The rutin contents of tartary buckwheat sprout that was grown under the 22,000 Lux light was the highest. The rutin content was increased dramatically at 14,000 Lux of light. From 14,000 to 22,000 Lux, there was a little change on rutin content. Therefore, the condition of 14,000 Lux light was determined optimal for manufacturing tartary buckwheat sprouts. Also, rutin contents of extracts treated with 60, 70, 80 and $90^{\circ}C$ during different time had no significant difference. Therefore, rutin of tartary buckwheat sprout extract had thermostability up to $90^{\circ}C$.