• Title/Summary/Keyword: Buckling strength

Search Result 912, Processing Time 0.023 seconds

A Study on the Load Carrying Capacity and Deformation Capacity of the Internal Anchors Welded Cold Formed Concrete Filled Columns (내부앵커형 콘크리트 충전 기둥의 내력 및 변형능력에 관한 연구)

  • Kim, Sun Hee;Yom, Kong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.347-357
    • /
    • 2013
  • Recently, In recognition of outstanding structural performance the use of Concrete Filled steel Tube(CFT) columns has been increased. Research is ongoing that effective use of cross-sectional because steel strength development and rising prices. In this Lab, suggests new shape by Thin steel plates bent to be L-channel welded to form square steel tube to maximize efficiency of the cross section. In addition, since the rib placed at the center of the tube width acts as an anchor; higher load capacity of buckling is acceptable. we have developed New shape welded built-up square tube for broader usability which were bent to be L-shaped and thin Plate each unit member were welded. In order to apply the new shape built-up square columns, we predicted structure behavior, stress distribution with parameter Width thickness ratio. The experimental results presented in standards and even exceed the b/t of the rib anchors installed in the role due to exert enough strength and deformation to improve performance was favorable.

Study on Residual Stress Distribution in Thick Plate Welded Material Using Indentation Equipment (압입시험기를 이용한 후판용접재의 잔류응력 분포에 관한 연구)

  • Huh, Sun-Chul;Kim, Gwi-Nam;Lee, Jong-Seok;Park, Cheol-Hong;Park, Joun-Sung;Park, Won-Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.66-71
    • /
    • 2011
  • Recently, the production of shipbuilding and offshore plant industries, with a trend toward large structures, has led to an increased use of high strength ultra-thick plates. The use of ultra-thick plates increases the welding tasks, and the welding process generates distortion and residual stress in the weldment because of the rapid heating and cooling. Welding distortion and residual stress in the welded structure resulte in many troubles such as deformation and life deterioration. In particular, the welding residual stress has an important effect on welding deformation, fatigue, buckling strength, brittleness, etc. The purpose of this study was to evaluate the residual stress at a multi-pass weldment using an experimental method for EH36 high-tension steel. In this experimental method, AIS3000 was used to measure the residual stress of a welded part, HAZ, and base metal; EPMA and XRD were used to study the material properties.

Analysis of Influential Factors on Ploughing Failure of Footwall Slope (Footwall 비탈면의 ploughing 파괴에 미치는 영향인자 분석)

  • Moon, Joon-Shik;Park, Woo-Jeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.659-665
    • /
    • 2016
  • The limit equilibrium method (LEM) is commonly used for slope design and stability analysis because it is easy to simulate slope and requires short calculating time. However, LEM cannot adequately simulate ploughing failure in a footwall slope with a joint set dipping parallel with slope, e.g. bedding joint set. This study performed parametric study to analyze the influence factors on ploughing failure using UDEC which is a commercial two-dimensional DEM (Distinct Element Method)-based numerical program. The influence of joint structure and properties on stability of a footwall slope against ploughing failure was investigated, and the factor of safety was estimated using the shear strength reduction method. It was found that the stability of footwall slope against ploughing failure strongly relies on dip angle of conjugate joint, and the critical bedding joint spacing and the critical length of slab triggering ploughing failure are also affected by dip angle of conjugate joint. The results obtained from this study can be used for effective slope design and construction including reinforcement.

An Experimental Evaluation of Structural Performance for the Beam to Column Joints in Unit Modular System (유닛 모듈러 기둥-보 조인트의 구조 성능에 대한 실험적 평가)

  • Lee, Sang Sup;Bae, Kyu Woong;Park, Keum Sung;Hong, Sung Yub
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.255-265
    • /
    • 2013
  • The major goal of this study is to develop the industrialized structural system that can build high-rise buildings using the box-shaped steel frames such as a unit module system. In order to achieve such a goal, we need the advanced details for joints that consist in a single unit. Furthermore we also need to commercialize the unit modular building system through the basic experiments, research of theoretical analysis and the achievement of seismic performance. This study derived to develop the derails in the beam-to-column joint and to carry out structural performance test. Test results, a joint with thickness of 6.0T can be possible to maintain the plastic rotational angle for strength and seismic performance. Therefore, joint with thickness of 6.0T is able to apply when considering reinforcement in the local of stress concentration.

A Study on Conceptual Structural Design for the Composite Wing of A Small Scale WIG Flight Vehicle (소형 WIG선의 복합재 주날개 구조 개념 설계에 관한 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Kim, Ju-Il;Kang, Kuk-Jin;Park, Mi-Young
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.179-184
    • /
    • 2005
  • In the present study, conceptual design of the main wing for 20 seats WIG{wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The high stiffness and strength Carbon-Epoxy material was used for the major structure and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, firstly the design load was estimated with maximum flight load, and then flanges of the front and the rear spar from major bending load and the skin structure and the webs of the spars were preliminarily sized using the netting rules and the rule of mixture. In order to investigate the structural safety and stability, stress analysis was performed by Finite Element Codes such as NASTRAN/PA TRAN[6] and NISA II [7]. From the stress analysis results, it was confirmed that the upper skin structure between the front spar and rear spar was very unstable for the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich structure at the upper skin and the web were added. After design modification, even thought the designed wing weight was a little bit heavier than the target wing weight, the structural safety and stability of the final design feature was confirmed. Moreover, in order to fix the wing structure at the fuselage, the insert bolt type structure with six high strength bolts was adopted for easy assembly and removal.

  • PDF

A Study on the Weight Reduction of Mid-sized Bulk Carrier based on the Harmonized Common Structural Rules (통합공통구조규칙 기반 중형 살물선의 중량 절감에 관한 연구)

  • Na, Seung-Soo;Song, Ha-Cheol;Jeong, Sol;Park, Min-Cheol;Jeon, Hyoung-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.336-342
    • /
    • 2016
  • H-CSR(Harmonized Common Structural Rules) integrating CSR-BC(Common Structural Rules for Bulk Carriers) and CSR-OT(Common Structural Rules for Double Hull Oil Tankers) came into effect in July of 2015, so that bulk carrier and double hull oil tanker should comply with this rules. So far, several studies for trend analysis of requirements of structure scantling based on H-CSR have been carried out briskly. However, those studies are rare to apply H-CSR in actual structural design of ships, especially bulk carriers. In this study, an automated system for compartment arrangement is used to search the design case that minimizes still water bending moment(S.W.B.M) in 38k bulk carrier designed by Far East Ship Design & Engineering Co. Ltd. Also, various structural design cases are considered by changing arrangement of structural members to reduce ship weight. The SeaTrust-Hullscan software developed by Korean Register is used to perform structural design of ships based on mother ship and proper design cases are selected by user. The DSA(Direct Strength Analysis) is performed to evaluate structural safety for the yielding and buckling analysis by using MSC Nastran software. The effect of weight reduction is verified by comparison of ship weight between mother ship and the selected design cases.

A comparison of three performance-based seismic design methods for plane steel braced frames

  • Kalapodis, Nicos A.;Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.27-44
    • /
    • 2020
  • This work presents a comparison of three performance-based seismic design methods (PBSD) as applied to plane steel frames having eccentric braces (EBFs) and buckling restrained braces (BRBFs). The first method uses equivalent modal damping ratios (ξk), referring to an equivalent multi-degree-of-freedom (MDOF) linear system, which retains the mass, the elastic stiffness and responds in the same way as the original non-linear MDOF system. The second method employs modal strength reduction factors (${\bar{q}}_k$) resulting from the corresponding modal damping ratios. Contrary to the behavior factors of code based design methods, both ξk and ${\bar{q}}_k$ account for the first few modes of significance and incorporate target deformation metrics like inter-storey drift ratio (IDR) and local ductility as well as structural characteristics like structural natural period, and soil types. Explicit empirical expressions of ξk and ${\bar{q}}_k$, recently presented by the present authors elsewhere, are also provided here for reasons of completeness and easy reference. The third method, developed here by the authors, is based on a hybrid force/displacement (HFD) seismic design scheme, since it combines the force-base design (FBD) method with the displacement-based design (DBD) method. According to this method, seismic design is accomplished by using a behavior factor (qh), empirically expressed in terms of the global ductility of the frame, which takes into account both non-structural and structural deformation metrics. These expressions for qh are obtained through extensive parametric studies involving non-linear dynamic analysis (NLDA) of 98 frames, subjected to 100 far-fault ground motions that correspond to four soil types of Eurocode 8. Furthermore, these factors can be used in conjunction with an elastic acceleration design spectrum for seismic design purposes. Finally, a comparison among the above three seismic design methods and the Eurocode 8 method is conducted with the aid of non-linear dynamic analyses via representative numerical examples, involving plane steel EBFs and BRBFs.

A Study on the Design of a High-Speed Heddle Frame (고속 직기용 복합재료 헤들 프레임의 설계에 관한 연구)

  • Lee, Chang-Seop;O, Je-Hun;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.250-263
    • /
    • 2001
  • The up and down speed of heddle frames that produce woven cloth by insertion of weft yarns between warp yarns has been increased recently much for productivity improvement, which induces higher inertial stresses and vibrations in the heddle frame. the heddle frame is required to reduce its mass because the heddle frame contributes the major portion of the stresses in the heddle frames during accelerating and decelerating. Conventional aluminum heddle frames have fatigue life of around 5 months at 550rpm due to their low fatigue flexural strength as well as low bending stiffness. In this work, since carbon/epoxy composite materials have high specific fatigue strength(S/p), high specific modulus(E/p), high damping capacity and sandwich construction results in lower deflections and higher buckling resistance, the sandwich structure composed of carbon/epoxy composite skins and polyurethane foam were employed for the high-speed heddle frame. The design map for the sandwich beams was accomplished to determine the optimum thickness and the stacking sequences for the heddle frames. Also the effects of the number of ribs on the stress of the heddle frame were investigated by FEM analyses. Finally, the high-speed heddle frames were manufactured with sandwich structures and the static and dynamic properties of the aluminum and the composite heddle frames were tested and compared with each other.

A Study on Development for Joint of Concrete Filled Steel Tube Column and P.C Reinforced Concrete Beam ( I ) The Investigation of Propriety for Model of Beam-to-Column Joint with Key Parameters, such as Section Type and Axial Force Ratio (콘크리트 충전강관 기둥과 PC 철근 콘크리트 보 접합부의 개발에 관한 연구( I ) -단면형상 및 축력비를 변수로 한 접합부 모델의 적합성 검토-)

  • Park, Jung Min;Kim, Wha Jung;Moon, Tae Sup;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.85-94
    • /
    • 1996
  • This paper investigated structural behaviors of joint of concrete filled steel tube column and P.C reinforced concrete beam through a series of hysteretic behavior experiment. The results are summarised as follows: (1) The joint stiffness of concrete filled square steel tube column and P.C reinforecd beam was higher than that of concrete filled circular steel tube column and P.C reinforecd beam, and it was decreased as the increase of the number of hysteretic cycle. (2) The aspects of the hysteretic behavior in the joint was stable as the increase of the number of hysteretic cycle, and rotation resisting capacity of joint of concrete filled square steel tube column and P.C reinforced concrete beam was higher than those of the concrete filled circular steel tube column and P.C reinforced concrete beam. (3) Some restriction must be put upon the ratio of axial force in this joint model because the load carrying capacity was decreased by flexural and flexural-torsional buckling in case of the ratio of axial force 0.6. (4) The emprical formula to predict the ultimate capacity of joint model to superimpose shearing strength of steel web(H section) and bending strength of reinforced concrete beam was expected.

  • PDF

A Study on the Compression Strength of Structural Steel Tube Applied in Spatial Structure (공간구조에 적용되는 일반구조용 강관의 압축내력에 관한 연구)

  • Baek, Ki-Youl
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.83-93
    • /
    • 2008
  • Space truss is a rational system which forming large span in spatial structure and the steel tube is used well as a structure member in truss system. This study includes coupon test and Stub-column compression test on the structural steel tube. The compression test of Stub-column was performed to characterize and quantify the material characteristic and strength of column. In this study, we also researched the matter of compatibility, in which we compared the experiment formula and the abstract formula by the application of the LSD standard formula, SSRC and ECCS multiple column curve.

  • PDF