• Title/Summary/Keyword: Buckling strength

Search Result 907, Processing Time 0.025 seconds

Shear Buckling Behavior for Trapezoidal Corrugated Webs for Bridges (파형강판 복부의 전단좌굴거동 연구)

  • 이필구;윤태양;이학은;이승록
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.513-520
    • /
    • 2003
  • As a trapezoidal corrugated steel plate has the sufficient stiffness out of plane direction without shear stiffener or thick plate, a use in the web of bridge structure is on the increase. However, there are no domestic design guides for shear buckling strength of corrugated plates. Therefore, foreign design specifications are analyzed about application methods and a numerical parametric study is used to get the relationship of the shear strength and geometric boundary conditions for corrugated plates. Elastic buckling finite element analysis is executed through eigenvalue analysis using the eight nodes five freedoms thin shell element. Parameters such as the width and height of panel and the thickness and height of web, are determined considering the factors to influence on the buckling of corrugated plate. Accuracy of shear buckling analysis is evaluated with theory of foreign buckling equations.

  • PDF

Buckling Behavior of Corrugated Steel Pipe under External Uniform Pressure (등분포하중을 받는 파형강관의 좌굴거동)

  • Ahn, Woo Cheul;Han, Taek Hee;Lim, Nam Hyoung;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • There are two basic concepts about concerning the buckling analysis of a buried pipe. One concept considers the soil around the pipe asn elastic continuum mediaum. The other concept holds that the pipe is sup ported by an elastic spring, which replaces the effects of the surrounding soil (the Winkler model). Theise buckling analysis is based on plane analysis, without considering the corrugation effect and the length effect. This paper thus presents a parametric study using the Finite Element Method (FEM) for the Winker model and proposes a buckling strength formula after examining a 3D analysis considering the corrugation effect and the length effect, thatwhichhelp in estimating the critical buckling strength of such CSP

A Study of the In-plane Rigidity of a Compressed Ship Plate above Buckling Load (압축하중을 받는 선체판의 좌굴후 면내강성에 관한 연구)

  • 고재용;박성현;박주신
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.107-112
    • /
    • 2002
  • Basically, ship structure consists of the plate members, and a strength of overall ship structurnds on the stiffness and strength of ship platings. If buckling which causes to deflect ship plate members occurs, the stiffness of ship plate markedly decreases, and thus buckling has a serious effect on the stiffness or strength of overall ship structure. Buckling is one of the most important design criteria when we scantle structure members. In the present study, a inplane rigidity of a compressed ship plate above buckling load is proposed. The proposed inplane rigidity is available in the elastic or elasto-Plastic ranges in order to can out a more efficient and reliable design.

  • PDF

Experimental and analytical study on the shear strength of corrugated web steel beams

  • Barakat, Samer;Leblouba, Moussa
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.251-266
    • /
    • 2018
  • Compared to conventional flat web I-beams, the prediction of shear buckling stress of corrugated web steel beams (CWSBs) is not straightforward. But the CWSBs combined advantages of lightweight large spans with low-depth high load-bearing capacities justify dealing with such difficulties. This work investigates experimentally and analytically the shear strength of trapezoidal CWSBs. A set of large scale CWSBs are manufactured and tested to failure in shear. The results are compared with widely accepted CWSBs shear strength prediction models. Confirmed by the experimental results, the linear buckling analyses of trapezoidal corrugated webs demonstrated that the local shear buckling occurs only in the flat plane folds of the web, while the global shear buckling occurs over multiple folds of the web. New analytical prediction model accounting for the interaction between the local and global shear buckling of CWSBs is proposed. Experimental results from the current work and previous studies are compared with the proposed analytical prediction model. The predictions of the proposed model are significantly better than all other studied models. In light of the dispersion of test data, accuracy, consistency, and economical aspects of the prediction models, the authors recommend their proposed model for the design of CWSBs over the rest of the models.

The Buckling Analysis of Stiffened Plate with Hole(3rd Report) -compression and shear buckling- (보강(補剛)된 유공판(有孔板)의 좌굴강도해석(挫屈强度解析)(제3보)(第3報) -압축(壓縮) 및 전단좌굴(剪斷挫屈))

  • Chang-Doo,Jang;Seung-Soo,Na
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.9-20
    • /
    • 1985
  • Generally the stiffened plate in the ship structure is subjected to not only axial load but shear load. With respect to those combined loads buckling analysis in necessary. In this paper, buckling strength is analyzed by using Finite Element Method when the stiffened plate with hole is under loading conditions mentioned above. To obtain the higher buckling strength, we need some reinforcement. The methods of reinforcement are attaching doubler around hole and stiffeners in the arbitrary directions For the sake of convenience those arbitrary directions were selected paralleled($0^{\circ}C$), vertical($90^{\circ}C$)and oblique($45^{\circ}C$) to the edge. Two kinds of method mentioned above are investigated, it is clarified that which of the two is more effective reinforcement. From the viewpoint of buckling strength, following conclusions were obtained. When external load direction is unknown, doubler reinforcement is more effective than those of parallel and vertical stiffener. And oblique stiffener reinforcement is more effective than that of doubler when external load direction is know.

  • PDF

Web bend-buckling strength of plate girders with two longitudinal web stiffeners

  • Kim, Byung Jun;Park, Yong Myung;Kim, Kyungsik;Choi, Byung H.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.383-397
    • /
    • 2019
  • More than one longitudinal web stiffener may be economical in the design of plate girders that have considerably high width-to-thickness ratio of webs. In this study, the bend-buckling strength of relatively deep webs with two horizontal lines of flat plate-shaped single-sided stiffeners was numerically investigated. Linear eigenvalue buckling analyses were conducted for specially selected hypothetical models of stiffened web panels, in which top and bottom junctions of a web with flanges were assumed to have simply supported boundary conditions. Major parameters in the analyses were the locations of two longitudinal stiffeners, stress ratios in the web, slenderness ratios and aspect ratios of web panels. Based on the application of assumptions on the combined locations of the two longitudinal web stiffeners, simplified equations were proposed for the bend-buckling coefficients and compared to the case of one longitudinal stiffener. It was found that bend-buckling coefficients can be doubled by adopting two longitudinal stiffeners instead of one longitudinal stiffener. For practical design purposes, additional equations were proposed for the required bending rigidity of the longitudinal stiffeners arranged in two horizontal lines on a web.

Experimental and numerical study of a steel plate-based damper for improving the behavior of concentrically braced frames

  • Denise-Penelope N. Kontoni;Ali Ghamari;Chanachai Thongchom
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.185-201
    • /
    • 2023
  • Despite the high lateral stiffness and strength of the Concentrically Braced Frame (CBF), due to the buckling of its diagonal members, it is not a suitable system in high seismic regions. Among the offered methods to overcome the shortcoming, utilizing a metallic damper is considered as an appropriate idea to enhance the behavior of Concentrically Braced Frames (CBFs). Therefore, in this paper, an innovative steel damper is proposed, which is investigated experimentally and numerically. Moreover, a parametrical study was carried out to evaluate the effect of the mechanism (shear, shear-flexural, and flexural) considering buckling mode (elastic, inelastic, and plastic) on the behavior of the damper. Besides, the necessary formulas based on the parametrical study were presented to predict the behavior of the damper that they showed good agreement with finite element (FE) results. Both experimental and numerical results confirmed that dampers with the shear mechanism in all buckling modes have a better performance than other dampers. Accordingly, the FE results indicated that the shear damper has greater ultimate strength than the flexural damper by 32%, 31%, and 56%, respectively, for plates with elastic, inelastic, and plastic buckling modes. Also, the shear damper has a greater stiffness than the flexural damper by 43%, 26%, and 53%, respectively, for dampers with elastic, inelastic, and plastic buckling modes.

Improving buckling response of the square steel tube by using steel foam

  • Moradi, Mohammadreza;Arwade, Sanjay R.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.1017-1036
    • /
    • 2014
  • Steel tubes have an efficient shape with large second moment of inertia relative to their light weight. One of the main problems of these members is their low buckling resistance caused from having thin walls. In this study, steel foams with high strength over weight ratio is used to fill the steel tube to beneficially modify the response of steel tubes. The linear eigenvalue and plastic collapse FE analysis is done on steel foam filled tube under pure compression and three point bending simulation. It is shown that steel foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior is investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve, in a way that, the failure mode change from local buckling to yielding.

Compression strength of pultruded equal leg angle sections

  • Polyzois, D.;Raftoyiannis, I.G.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.541-555
    • /
    • 2000
  • Pultruded cross-sections are always thin-walled due to constraints in the manufacturing process. Thus, the buckling strength determines the overall strength of the member. The elastic buckling of pultruded angle sections subjected to direct compression is studied. The lateral-torsional buckling, very likely to appear in thin-walled cross-sections, is investigated. Plate theory is used to allow for cross-sectional distortion. Shear effects and bending-twisting coupling are accounted for in the analysis because of their significant role. A simplified approach for determining the maximum load of equal leg angle sections under compression is presented. The analytical results obtained in this study are compared to the manufacturer's design guidelines for compression members as well as with the design specifications for steel structural members. Experimental results are obtained for various length specimens of pultruded angle sections. The results presented in this paper correspond to actual pultruded equal leg angle sections being used in civil engineering structures.

The Need for Research about Buckling Strength of Arch and Beam (보와 아치의 좌굴강도에 관한 연구의 필요성)

  • Lim, Nam-Hyoung;Lee, Chin-Ok;Ryu, Hyo-Jin;Lee, Woo-Chul;Koo, So-Yeun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.223-226
    • /
    • 2007
  • In current specification, modification factor(B) for web-tapered beam is used to account for the stress gradient and the restraining effect for adjacent spans. However, because these effects are considered together in modification factor, this paper revaluate the accuracy of the modification factor used in current specification. Also this paper investigate the flexural torsional buckling strength of laterally fixed thin-walled arch with doubly symmetric section using the analytical and numerical method. From this investigate the concept of effective length to consider the out-of-plane boundary condition for straight column or beam is not applicate for the flexural-torsional buckling of laterally fixed arches.

  • PDF