• 제목/요약/키워드: Buckling pattern

검색결과 83건 처리시간 0.02초

삼각형 네트워크를 갖는 단층 및 복층 구형 스페이스 프레임 구조물의 좌굴특성에 관한 비교 연구 (A Comparative Study on the Buckling Characteristics of Single-layer and Double-layer Spherical Space Frame Structure with Triangular Network Pattern)

  • 이호상;정환목;권영환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.251-257
    • /
    • 1998
  • Spherical space frame structure with triangular network pattern, which has the various characteristics for the mechanic property, a funtional property, an aesthetic property and so on, has often been used as one of the most efficient space structures. It is expected that this type will be used widely in large-span structural roofs. But because this structure is made of network by combination of line elements there me many nodes therefore, the structure behavior is very complicated and there can be an overall collapse of structure by buckling phenomenon if the external force reaches a limitation. This kind of buckling is due to geometric shape, network pattern, the number of layer and so on, of structure. Therefore spherical space frame with triangle network pattern have attracted many designers and researchers attention all over the world. The number of layer of space frame is divided in to the simgle, double, multi layer. That is important element which is considered deeply in the beginning of structural design. The buckling characteristics of single-layer model and double-layer model for the spherical space frame structure with triangular network pattern are evaluated and the buckling loads of these types are compared with investigation their structural efficiency in this study.

  • PDF

Assessment of negative Poisson's ratio effect on thermal post-buckling of FG-GRMMC laminated cylindrical panels

  • Shen, Hui-Shen;Xiang, Y.
    • Advances in nano research
    • /
    • 제10권5호
    • /
    • pp.423-435
    • /
    • 2021
  • This paper examines the thermal post-buckling behaviors of graphene-reinforced metal matrix composite (GRMMC) laminated cylindrical panels which possess in-plane negative Poisson's ratio (NPR) and rest on an elastic foundation. A panel consists of GRMMC layers of piece-wise varying graphene volume fractions to obtain functionally graded (FG) patterns. Based on the MD simulation results, the GRMMCs exhibit in-plane NPR as well as temperature-dependent material properties. The governing equations for the thermal post-buckling of panels are based on the Reddy's third order shear deformation shell theory. The von Karman nonlinear strain-displacement relationship and the elastic foundation are also included. The nonlinear partial differential equations for GRMMC laminated cylindrical panels are solved by means of a singular perturbation technique in associate with a two-step perturbation approach and in the solution process the boundary layer effect is considered. The results of numerical investigations reveal that the thermal post-buckling strength for (0/90)5T GRMMC laminated cylindrical panels can be enhanced with an FG-X pattern. The thermal post-buckling load-deflection curve of 6-layer (0/90/0)S and (0/90)3T panels of FG-X pattern are higher than those of 10-layer (0/90/0/90/0)S and (0/90)5T panels of FG-X pattern.

Buckling treatment of piezoelectric functionally graded graphene platelets micro plates

  • Abbaspour, Fatemeh;Arvin, Hadi
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.337-353
    • /
    • 2021
  • Micro-electro-mechanical systems (MEMS) are widely employed in sensors, biomedical devices, optic sectors, and micro-accelerometers. New reinforcement materials such as carbon nanotubes as well as graphene platelets provide stiffer structures with controllable mechanical specifications by changing the graphene platelet features. This paper deals with buckling analyses of functionally graded graphene platelets micro plates with two piezoelectric layers subjected to external applied voltage. Governing equations are based on Kirchhoff plate theory assumptions beside the modified couple stress theory to incorporate the micro scale influences. A uniform temperature change and external electric field are regarded along the micro plate thickness. Moreover, an external in-plane mechanical load is uniformly distributed along the micro plate edges. The Hamilton's principle is employed to extract the governing equations. The material properties of each composite layer reinforced with graphene platelets of the considered micro plate are evaluated by the Halpin-Tsai micromechanical model. The governing equations are solved by the Navier's approach for the case of simply-supported boundary condition. The effects of the external applied voltage, the material length scale parameter, the thickness of the piezoelectric layers, the side, the length and the weight fraction of the graphene platelets as well as the graphene platelets distribution pattern on the critical buckling temperature change and on the critical buckling in-plane load are investigated. The outcomes illustrate the reduction of the thermal buckling strength independent of the graphene platelets distribution pattern while meanwhile the mechanical buckling strength is promoted. Furthermore, a negative voltage, -50 Volt, strengthens the micro plate stability against the thermal buckling occurrence about 9% while a positive voltage, 50 Volt, decreases the critical buckling load about 9% independent of the graphene platelet distribution pattern.

Buckling behavior of strengthened perforated plates under shear loading

  • Cheng, Bin;Li, Chun
    • Steel and Composite Structures
    • /
    • 제13권4호
    • /
    • pp.367-382
    • /
    • 2012
  • This paper is dedicated to the buckling behaviors of strengthened perforated plates under edge shear loading, which is a typical load pattern of steel plates in civil engineering, especially in plate and box girders. The square plates considered each has a centric circular hole and is simply supported on four edges in the out-of-plane direction. Three types of strengthening stiffeners named ringed stiffener (RS), flat stiffener (FSA and FSB) and strip stiffener (SSA, SSB and SSC) are mainly discussed. The finite element method (FEM) has been employed to analyse the elastic and elasto-plastic buckling behavior of unstrengthened and strengthened perforated plates. Results show that most of the strengthened perforated plates behave higher buckling strengths than the unstrengthened ones, while the enhancements in elastic buckling stress and elasto-plastic ultimate strength are closely related to stiffener types as well as plate geometric parameters including plate slenderness ratio and hole diameter to plate width ratio. The critical slenderness ratios of shear loaded strengthened perforated plates, which determine the practical buckling pattern (i.e., elastic or elasto-plastic buckling) of the plates, are also studied. Based on the contrastive analyses of strengthening efficiency considering the influence of stiffener consumption, the most efficient cutout-strengthening methods for shear loaded perforated square plates with different slenderness ratios and circular hole diameter to plate width ratios are preliminarily identified.

점용접된 두 사각평판의 형상비 및 용접점수에 대한 전단좌굴하중의 유한요소해석 (Finite Element Analysis of the Shear Buckling Load with Respect to the Aspect Ratio and Number of Spots of two Rectangular Plates Spot-welded)

  • 한근조;전형용;이현철
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.173-181
    • /
    • 2000
  • The stability of a structural plate is a crucial problem which causes wrinkling and buckling. In this paper, the effect of the pattern of spot-welding points in the two rectangular plate on the shear buckling load is studied with respect to the thickness, the aspect ratio of plates, the number of welding spots. Buckling coefficient of the simple plate was compared with that of two plates with various conditions to extract the effect of buckling strength. The effect of the number of welding spots are studied in two directions, longitudinal and transverse directions. The concluded that the reinforcement effect was maximized when the aspect ratio was close to 1.5 and that the effect of number of welding spots in longitudinal direction was larger than that in transverse direction.

  • PDF

무선 랜 시스템용 스마트 스킨의 좌굴 특성 연구 (Characteristics of Smart Skin for Wireless LAN system under Buckling Load)

  • 전지훈;유치상;황운봉;박현철;박위상
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.42-45
    • /
    • 2001
  • The characteristics of smart skin for wireless LAN system under compression load are investigated. The smart skin structure is composed of 3 layers of face material and 2 layers of core material. Theoretical formula for determining buckling load is derived by Rayleigh-Ritz method and compared with experimental result. The maximum length of specimen that buckling does not occur is determined by only face material. In the experiment, if load supporting capability and the antenna property such as radiation pattern and reflection coefficient were examined.

  • PDF

기둥과 보-기둥 구조물의 비탄성 좌굴거동 (Inelastic Buckling Behavior of Column and Beam-Column)

  • 이동식;오순택
    • 한국강구조학회 논문집
    • /
    • 제16권2호통권69호
    • /
    • pp.215-224
    • /
    • 2004
  • 에너지법을 이용하여 보-기둥 및 기둥의 비탄성 좌굴거동을 해석하였다. 미국에서 생산되는 I 형강에 적용되는 단순형 잔류응력 모델을 우리나라에서 생산되는 I 형강에 적용하였다. 먼저, 집중 압축 축하중과 균등 휨을 동시에 받는 I 형강에 대하여 비탄성 횡-비틀림 좌굴거동을 알아보고 보-기둥에서의 잔류응력의 영향을 해석하였다. 또한 기둥의 경우에 대하여 해석하였으며 얻어진 결과를 강구조편람에 의한 설계 시의 값과 비교하였다. 결론적으로 강구조편람에 의한 설계는 과설계가 됨을 알 수 있었다.

점용접된 구조물의 좌굴하중해석 (Buckling Load Analysis of Spot-Welded Structures)

  • 이현철;심재준;안성찬;한근조
    • 한국항만학회지
    • /
    • 제14권1호
    • /
    • pp.87-95
    • /
    • 2000
  • This stability of a plate structure is very crucial problem which results in wrinkle and buckling. In this study, the effect of the pattern of spot-welding points of the two rectangular plates on the compressive and shear buckling load is studied with respect to the thickness, aspect ratio of plates and number of welding spots. Buckling coefficient of the plate not welded was compared with that of two plates with various thickness to extract the effect of thickness. The effect of number of welding spots are studied in two directions, longitudinal and transverse directions. The conclusions obtained were that the reinforcement effect was maximized when the aspect ratio was close to 1.75 at compressive load condition and that the effect of number of welding spots in transverse direction was larger than that in longitudinal direction at shearing load condition.

  • PDF

등방성격자 구조의 좌굴거동에 대한 매개변수 분석 (Parameter Study of Buckling Behavior for Isogrid Structure)

  • 강경한;김용하;박진호;김현덕;박정선
    • 항공우주시스템공학회지
    • /
    • 제7권2호
    • /
    • pp.8-14
    • /
    • 2013
  • When launch vehicles are manufactured, one of the key points is a design of lightweight structure for reducing costs. Isogrid structure was designed to solve this topic, and many researches were carried out about buckling load because compression load is mainly applied to them. Recently, many studies are also being carried out about FEM model geometry of isogrid structure. The reason is that isogrid structure depends on size of ribs so it is difficult to modify about small changes in rib pattern. In this study, 1/8 model of cylindrical isogrid structure model was developed to analyze buckling behavior. Through parameter study, buckling analysis were performed to analyze buckling load and buckling mode depending on size of ribs.

Elastic stability of functionally graded graphene reinforced porous nanocomposite beams using two variables shear deformation

  • Fortas, Lahcene;Messai, Abderraouf;Merzouki, Tarek;Houari, Mohammed Sid Ahmed
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.31-54
    • /
    • 2022
  • This paper is concerned with the buckling behavior of functionally graded graphene reinforced porous nanocomposite beams based on the finite element method (FEM) using two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element, and then the critical buckling load is calculated with different porosity distributions and GPL dispersion patterns. After a convergence and validation study to verify the accuracy of the present model, a comprehensive parametric study is carried out, with a particular focus on the effects of weight fraction, distribution pattern of GPL reinforcements on the Buckling behavior of the nanocomposite beam. The effects of various structural parameters such as the dispersion patterns for the graphene and porosity, thickness ratio, boundary conditions, and nonlocal and strain gradient parameters are brought out. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams, and the results allows to identify the most effective way to achieve improved buckling behavior of the porous nanocomposite beam.