• Title/Summary/Keyword: Buckling member

Search Result 258, Processing Time 0.022 seconds

A Comparative Study on the Buckling Characteristics of Single-layer and Double-layer Lattice Dome According to Rise ratio (라이즈비에 따른 단층 및 복층 래티스 돔의 좌굴특성에 관한 비교연구)

  • 권영환;정환목;석창목;박상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.283-289
    • /
    • 1998
  • In the latticed domes which is a set of space frame, buckling is derived if the external force reaches a limitation by the lightness of the material and the minimization of the member section area. these are concerned with a geometric shape, network pattern, the number of layer, and so on. Most of all, the number of layer of the lattice dome is a important factor from the viewpoint of initial and structure design. Therefore this study compared buckling characteristics of single-layer with double-layer latticed domes and investigated the relativity of buckling-stress-ratio and member-density-ratio according to rise ratio to improve that designers could extend the range of .design selection

  • PDF

Critical Loads of Eccentrically Loaded Struts with Thin-Walled Open Sections (편심하중을 받는 박벽개단면 압축재의 임계하중)

  • 나영진;이수곤
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.135-140
    • /
    • 1996
  • Single angle or channel with thin-walled open section can be used as compression member for example as web member in truss. In this case the inevitable eccentricity due to fabrication is commonly neglected in structural design. However eccentricity effect should be considered in the member design, especially in case of compression member. The critical loads of compression members that buckle by twisting or by a combination of bending and twisting are to be determined by solving governing differential equations. In this paper, the investigations are limited to the rolled channels([), equal-leg angles(L), lipped channels(C) and the applied loads are assumed to have some eccentricities.

  • PDF

A Study on the Buckling Characteristics of Single-Layer Latticed Domes under Equipment-Loading (설비하중을 고려하는 단층래티스돔의 좌굴특성에 관한 연구)

  • 박지영;정환목;권영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.83-88
    • /
    • 1994
  • Recently, the equipments of the structure are increasing remarkably. It is very important to evaluate the stability of the domes under concentrated loading such as a large-scale illuminating, visional, and sound equipment. The paper is aimed at investigating the buckling characteristics of single-layer latticed domes with triangular network under the uniformly distributed vertical-loading and the partially concentrated equipment-loading. The results show that the effects of the equipment-loading on the buckling strength is much more sensitive in domes of overall buckling than in domes of member buckling.

  • PDF

A Study on the Characteristics of High Tensile Strength Steel(SM570) Plates in Compression Members (고장력(SM570)강재의 압축재 특성에 관한 연구)

  • Im, Sung-Woo;Ko, Sang-Ki;Chang, In-Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.223-232
    • /
    • 2001
  • Column tests subjected to compressive loading were carried out for the estimation of compression buckling strength of steel plate SM570 in beam-column member under high axial load. It was found that the maximum strength of column member was determined by local buckling when satisfied with a limit of width-to-thickness ratio in current steel structure design specifications, but decreased suddenly by local buckling before the maximum strength in case of not satisfying with that ratio. Also, the compression buckling strength of SM570 plate was higher than the design specification value of 4$4.1tonf/cm^2$.

  • PDF

An Experimental study of Buckling Behavior in Built-up Compression Member with Unsymmetric Connectors I - Effect of Distance of Connecting Members - (비대칭 연결재를 갖는 조립식 압축부재의 좌굴 거동에 관한 실험 연구 I - 연결재 간격의 영향 -)

  • Kang, Sanghoon;Han, Manyop;Cho, Byeongdu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.207-215
    • /
    • 2012
  • Structural behavior of built-up compression members with unsymmetric connectors under buckling status has been studied through these experiments. When the distance between adjacent H-300 beams of built-up compression member is 2 m in length, and the H-300 beams are lengthened up to 30 m in length with three-10 m-H-beams by bolts and double arrayed, three specimen having each connector interval 4 m, 5 m, 6 m are experimented for evaluating buckling loads. The buckling loads from the experiments are compared with buckling loads of structural analysis using FEM and buckling loads of Timoshenko Eq. loads in order to figure out how the connectors' interval affects on longitudinal and lateral displacements, also strain of the built-up compression members as well. The result shows that the buckling loads tend to sharply decrease non-linearly according to connectors' interval increases. As well as that, the differences between experimental buckling loads and theoretical buckling loads and between experimental buckling loads and structural analyses buckling loads also have a tendency to be increased as the connector interval increases.

Design of Pultruded I-shape FRP Compression Member (펄트루젼 I형 FRP 압축재의 설계)

  • Joo, Hyung-Joong;Lee, Seung-Sik;Yi, Jong-Seok;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.25 no.2
    • /
    • pp.46-53
    • /
    • 2012
  • Using pultrusion process, FRP composite structural members having various cross-section shapes can be produced with unlimited lengths. Because of such reasons, these members are suitable for the application in the construction field. Especially, this material is highly appreciated if the material is to be used in the corrosive environments such as aquatic or oceanic environments due to its high corrosion resistance. However, design criteria for the FRP structural member are not developed yet. So, the research on the development of design guideline is needed ungently. In order to use the pultruded structural FRP member efficiently, the members are composed of thin plate components, and thus, the member is prone to buckle easily and the buckling is one of the governing strength limit states for the design. In this paper, we present the analytical study results pertaining to the buckling behavior of I-shape FRP compression member. In addition, design procedure and flow-chart are also proposed based on the study results including previous experimental results. Proposed design procedure is similar to that in ANSI/AISC 360-10 with minor modification. Therefore, it is convinced that the structural design of pultruded FRP compression member could be done easily by following design procedure proposed in this paper.

A Study on the Ultimate Load of Electric Transmission Tower Considering Member Strength and Joint Strength (부재 내력과 접합부 내력을 고려한 송전강관철탑의 극한하중 도출에 관한 연구)

  • Kim, Woo-Bum;Jeon, Bum-Jun;Suh, Yong-Pyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.435-443
    • /
    • 2010
  • The current design practice of an electric transmission tower is based on the allowable stress design. Design strengths of the electric transmission tower's compression member are determined by buckling the strength of the member itself without considering joint strength. There is a possibility of a joint failure prior to the buckling of a member. Therefore, in this study, joint strength is calculated for various member forces, and the shape of joint and database of strength were established. These data was compared with the member strength obtained from previous research studies based on an equivalent nonlinear analysis technique. Finally, practical evaluation and design method to distinguish failure mode in an electric transmission tower member is proposed.

Crash Performance of a Straight Member for Various Section Shapes and Local Reinforcement (단면 형상 및 국부 보강에 따른 직선 부재의 충돌 성능)

  • Lee, Hunbong;Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.97-103
    • /
    • 2013
  • Crash performance of the straight member was studied by FE analysis. One end of model was fixed and the other end was impacted by 1,000kg rigid mass with velocity of 16.0m/sec. The maximum and mean load were discussed to compare crash performance. The members with various section shapes were analyzed and the flange location was changed. Also, spot weld points were added in the initial buckling region to investigate its effect. Final rectangular section model which has flanges at the center and reinforcement in initial buckling region showed high enhancement in crash performance.

Elastic Local Buckling for Orthotropic Channel Section Compression Members with Edge Stiffeners (연단보강된 직교이방성 Channel 단면 압축재의 탄성국부좌굴)

  • 최원창;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.91-94
    • /
    • 2001
  • This paper presents the analytical investigation pertaining to the local buckling behavior of orthotropic channel section compression members stiffened with unsymmetric stiffeners at its free edges. In the analysis, tile edge stiffener is modeled as a beam element or a plate element. The result of both cases is presented in graphical form so that the effects of edge stiffeners on the local buckling strength of edge stiffened channel section member can be found.

  • PDF

Seismic Behavior of Concrete-Filled HSS Bracing Members Reinforced by Rib (리브 보강된 콘크리트 충전 HSS 가새부재의 이력 거동)

  • Han, Sang Whan;Yeo, Seung Min;Kim, Wook Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.53-62
    • /
    • 2005
  • The purpose of this study is to improve the seismic behavior of the bracing members. Lee and Goel's (1987) concrete filling in the hollow structural section (HSS) reduced the severity of local buckling and increased the fracture life. However, concrete filling in the HSS did not prevent the occurrence of local buckling in the midsection of the bracing member, which resulted in continuous strength degradation. This study investigated the seismic behavior of the concrete-filled HSS bracing member, which is reinforced by ribs in the midsection of the bracing member. The main variable of the specimens is rib length. The test results showed that buckling mode, cyclic compression strength, and energy dissipation capacity of the bracing members were affected by rib length. Specimen reinforced with ribs with a length of 63% had better structural performance.