• Title/Summary/Keyword: Buckling analysis

Search Result 1,757, Processing Time 0.023 seconds

Study on the Analysis of Welding Induced Buckling Distortion in Thin Plate Block (박판 블록의 용접 좌굴 변형 해석에 관한 연구)

  • Jang, Gyeong-Bok;Park, Jung-Gu;Yang, Jin-Hyeok;Jo, Si-Hun;Jang, Tae-Won
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.23-25
    • /
    • 2005
  • This paper presents a numerical analysis method for predicting welding-induced deformation and buckling in ship block with thin plates. The numerical method is particularized on evaluating buckling distortion induced by welding. There are two steps in the numerical analysis model. One is to solve the eigenvalue problem of welded structure by elastic buckling analysis, and the other is to solve the welding-induced buckling distortion of welded structure by post-mechanical analysis. Equivalent force method was used for considering the shrinkage force by welding in the analysis model.

  • PDF

Buckling of post-tensioned composite beams

  • Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.113-123
    • /
    • 1994
  • A method for computing the elastic buckling prestressing force of a post-tensioned composite steel-concrete tee-beam is presented. The method is based on a virtual work formulation, and incorporates the restraint provided by the concrete slab to the buckling displacements of the steel beam. The distortional buckling solutions are shown to be given by a quadratic equation. The application of the analysis to calculation buckling strengths is given, based on codified rules for beam-columns. Conclusions are then drawn on the importance of distortional buckling when a post-tensioned composite beam is stressed during jacking.

Buckling Characteristics of the KALIMER-150 Reactor Vessel Under Lateral Seismic Loads and the Experimental Verification Using Reduced Scale Cylindrical Shell Structures

  • Koo Gyeong-Hoi;Lee Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.537-546
    • /
    • 2003
  • The purpose of this paper is to investigate the buckling characteristics of a conceptually designed KALIMER-150(Korea Advanced LIquid MEtal Reactor, 150MWe) reactor vessel and verify the buckling behavior using the reduced scale cylindrical shell structures. To do this, nonlinear buckling analyses using finite element method and evaluation formulae are carried out. From the results, the KALIMER-150 reactor vessel exhibits a dominant bending buckling mode and is significantly affected by the plastic behavior. The interaction effects with the vertical seismic load cause the lateral buckling load to be slightly decrease. From the results of the buckling experiments using reduced scaled cylindrical shell structures, it is verified that the buckling modes such as pure bending, pure shear, and mixed(bending plus shear) mode clearly appear under a lateral load corresponding to the slenderness ratio of cylinder.

A Study on Efficient Analysis of Delamination Buckling of Composite Structures (효율적인 복합재료구조물의 delamination buckling 해석기법에 관한 연구)

  • 황재웅;김용협
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.80-84
    • /
    • 2000
  • A mesh superposition technique is presented for an efficient analysis of structural behavior. Refined child mesh is superimposed over parent elements for the region of interest. It is a kind of adaptive mesh refinement, which allows locally refined mesh without introducing transition region or multipoint constraints. Proper boundary condition is necessary to avoid redundant rigid body motion and kinematic compatibility between neighbor elements. Delamination buckling analysis is conducted to demonstrate accuracy and efficiency of the present method.

  • PDF

Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading

  • Akbas, Seref Doguscan;Kocaturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.109-125
    • /
    • 2012
  • Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with temperature dependent physical properties are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The convergence studies are made. In this study, the difference between temperature dependent and independent physical properties are investigated in detail in post-buckling case. The relationships between deflections, thermal post-buckling configuration, critical buckling temperature, maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.

Dynamic elastic local buckling of piles under impact loads

  • Yang, J.;Ye, J.Q.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.543-556
    • /
    • 2002
  • A dynamic elastic local buckling analysis is presented for a pile subjected to an axial impact load. The pile is assumed to be geometrically perfect. The interactions between the pile and the surrounding soil are taken into account. The interactions include the normal pressure and skin friction on the surface of the pile due to the resistance of the soil. The analysis also includes the influence of the propagation of stress waves through the length of the pile to the distance at which buckling is initiated and the mass of the pile. A perturbation technique is used to determine the critical buckling length and the associated critical time. As a special case, the explicit expression for the buckling length of a pile is obtained without considering soil resistance and compared with the one obtained for a column by means of an alternative method. Numerical results obtained show good agreement with the experimental results. The effects of the normal pressure and the skin friction due to the surrounding soil, self-weight, stiffness and geometric dimension of the cross section on the critical buckling length are discussed. The sudden change of buckling modes is further considered to show the 'snap-through' phenomenon occurring as a result of stress wave propagation.

Buckling and Post buckling Analysis of Composite Plates with Internal Flaws

  • Sreehari, VM;Maiti, DK
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.19-23
    • /
    • 2015
  • This work deals with the study of buckling and post buckling characteristics of laminated composite plates with and without localized regions of damage. The need of a detailed study on Finite Element Analysis of buckling and post buckling of laminated composite structures considering various aspects enhances the interest among researchers. Mathematical formulation is developed for damaged composite plates using a finite element technique based on Inverse Hyperbolic Shear Deformation Theory. This theory satisfies zero transverse shear stresses conditions at the top and bottom surfaces of the plate and provides a non-linear transverse shear stress distribution. Damage modeling is done using an anisotropic damage formulation, which is based on the concept of stiffness change. The structural elements are subjected to in-plane loading. The computer program is developed in MATLAB environment. The numerical results are presented after through validation of developed finite element code. The effect of damage on buckling and post buckling has been carried out for various parameters such as amount of percentage of damaged area, damage intensity, etc. The results show that the presence of internal flaws will significantly affect the buckling characteristics of laminated composite plates. The outcomes and remarks from this work will assist to address some key issues concerning composite structures.

A Study on the Buckling Analysis of the Thick-walled Square Tubes (재료의 비선형성을 고려한 후육 정사각튜브의 좌굴에 관한 연구)

  • 한병기;박봉현;정태은;홍승준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.228-234
    • /
    • 1998
  • The buckling is one of the major two nonlinear problems. One is the material non-linearity and other is the geometrical nonlinear. Material non-linearity has occurred when the buckling stress of material exceeded the yield stress of material. The material non-linearity must be taken into account when the buckling analysis of thick plate is performed. In this study, inelastic modulus that is used to calculate the buckling strength is taken to account for the material non-linearity. The results from experiments are used to formulate the semi-theoretical formula. The analysis results generated by the use of semi-theoretical formula are close to the experimental data.

  • PDF

Inelastic lateral-distortional buckling of continuously restrained continuous beams

  • Lee, Dong-Sik
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.305-326
    • /
    • 2005
  • The inelastic buckling behaviour of continuously restrained two and three-span continuous beams subjected to concentrated loads and uniformly distributed loads are studied in this paper. The restraint type considered in this paper is fully restrained against translation and elastic twist applied at the top flange. These types of restraints are most likely experienced in industrial structures, for example steel-concrete composite beams and half through girders. The buckling analysis of continuous beam consists of two parts, firstly the moment and shear distribution along the member are determined by employing force method and the information is then used for an out-of-plane buckling analysis. The finite element method is incorporated with so-called simplified and the polynomial pattern of residual stress. Owing to the inelastic response of the steel, both the in-plane and out-of-plane analysis, which is treated as being uncoupled, extend into the nonlinear range. This paper presents the results of inelastic lateral-torsional and lateral-distortional buckling load and finally conclusions are drawn regarding the web distortion.

Shear buckling analysis of cross-ply laminated plates resting on Pasternak foundation

  • Topal, Umut;Nazarimofrad, Ebrahim;Kholerdi, Seyed Ebrahim Sadat
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.369-375
    • /
    • 2018
  • This paper presents the shear buckling analysis of symmetrically laminated cross-ply plates resting on Pasternak foundation under pure in-plane uniform shear load. The classical laminated plate theory is used for the shear buckling analysis of laminated plates. The Rayleigh-Ritz method with novel plate shape functions is proposed to solve the differential equations and a computer programming is developed to obtain the shear buckling loads. Finally, the effects of the plate aspect ratios, boundary conditions, rotational restraint stiffness, translational restraint stiffness, thickness ratios, modulus ratios and foundation parameters on the shear buckling of the laminated plates are investigated.