• 제목/요약/키워드: Buckling Test

검색결과 501건 처리시간 0.024초

핵연료 조사시험용 캡슐 구조물의 좌굴 및 진동특성 (Buckling and Vibration Characteristics of the Capsule for Nuclear Fuel Irradiation Test)

  • 강영환;김봉구;류정수;김영진;최명환
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.741-748
    • /
    • 2004
  • The vibration and buckling characteristics of the capsule for fuel irradiation test are studied. The natural frequencies of the capsule in air and under water are obtained by modal testing and finite element (FE) analysis using ANSYS program, and accelerations with flow are measured to estimate the compatibility with the operation requirement of the HANARO reactor. The experimental fundamental frequencies of the capsule in the x and z direction are 8.5 Hz and 8.75 Hz in air, and 7.5 Hz and 7.75 Hz under water, respectively. The maximum amplitude of accelerations under the normal operating condition is measured as 11.0 m/s$^2$ that is within the allowable vibrational limit(18.99 m/s$^2$) of the reactor structure. Also, the maximum displacement at 100% flow is calculated as 0.13 mm which is not interference with other nearby structures. FE analysis results show that the natural frequencies are found to be similar to those of the modal testing when three supporting parts are considered as simply supported conditions. From the buckling analysis, when the loading tool is applied, the critical buckling load of the capsule is 233 N.

FRP Sheet와 비좌굴 가새를 적용한 보-기둥 접합부의 횡방향 보강효과에 관한 실험적 연구 (Experimental Investigation of The Lateral Retrofitting Effect of FRP Sheet and Buckling-restrained Braces for Beam-Column Joints)

  • 변은혁;김민숙;이영학;김희철
    • 한국지진공학회논문집
    • /
    • 제15권1호
    • /
    • pp.49-56
    • /
    • 2011
  • FRP Sheet와 비좌굴가새를 적용한 보-기둥 접합부의 보강효과를 평가하기 위하여 보-기둥 접합부 실험체에 축력 및 반복 횡가력을 가하여 실험을 수행하였다. 동일한 크기의 6개의 실험체를 제작하였으며 FRP Sheet의 종류 및 비좌굴 가새의 유무를 변수로 하였다. 실험체의 파괴양상 및 최대하중, 연성지수, 에너지소산능력의 측면에서 실험결과를 분석하였다. 실험결과 CFRP Sheet와 비좌굴가새를 혼용한 보강방법이 가장 우수한 성능을 나타냈다.

초기 결함 조건 모델에 따른 복합재 원통 구조의 좌굴 Knockdown factor 도출 (Derivation of Knockdown Factors for Composite Cylinders with Various Initial Imperfection Models)

  • 김도영;심창훈;박재상;유준태;윤영하;이기주
    • Composites Research
    • /
    • 제34권5호
    • /
    • pp.283-289
    • /
    • 2021
  • 본 연구에서는 압축력을 받는 얇은 복합재 원통 구조에 대하여 기하학적 혹은 하중에 대한 초기 결함 모델을 이용하여 수치해석적으로 좌굴 Knockdown factor를 새롭게 도출하였다. 전역 좌굴이 발생하기 이전에 타원형상의 변형 형상을 갖는 복합재 원통 구조를 사용하였다. 복합재 원통 구조의 기하학적 초기 결함만 고려하기 위하여 Single Perturbation Load Approach를 이용하였으며, 기하학적 초기 결함과 더불어 하중 불균일을 함께 구현하기 위하여 Single Boundary Perturbation Approach를 사용하였다. 기하학적 초기 결함 모델의 좌굴 Knockdown factor는 NASA의 기존의 좌굴 Knockdown factor보다 약 84% 높게 도출되었으며, 좌굴 시험에 비하여서는 약 9% 낮게 도출되었다. 기하학적 초기 결함과 하중 불균일을 함께 고려하는 모델의 좌굴 Knockdown factor는 NASA의 좌굴 Knockdown factor에 비하여서는 약 75% 높게, 그리고 좌굴 시험보다 약 14% 낮게 계산되었다. 따라서, 본 연구의 좌굴 설계 기준은 고려된 초기 결함 모델과 상관없이 기존의 좌굴 설계 기준에 비하여 경량 설계의 제공이 가능함과 동시에 좌굴 시험 대비 적절히 보수적인 설계 기준을 제공할 수 있음을 확인하였다.

볼접합부를 갖는 원형강관부재의 좌굴길이 평가 (Evaluation on the Buckling Length of Circular Hollow Steel with Ball Joints)

  • 강종
    • 한국산업융합학회 논문집
    • /
    • 제15권1호
    • /
    • pp.5-11
    • /
    • 2012
  • The Buckling of the member under compressive stress is likely to occur, which is an important factor determining the strength of structures. The objective of this study was to evaluate the member buckling strength of a circular hollow steel with ball joints and to compare with design specifications for load resistance factor of our country. Furthermore, we would like to suggest basic data for evaluation of buckling length of a circular hollow steel with ball joints according to comparative analysis. These results were summarized as follows: Buckling stress according to the test results on buckling was 1.21 times greater than LSD specifications of our country estimated the entire length of circular hollow steel with ball joints as buckling length. In addition, it was 1.16 times greater than when estimating the length except the ball as buckling length and 1.14 times grater than when excluding the ball and sleeve. Therefore, when estimating buckling stress of circular hollow steel with ball joints, their buckling length may be measured by the length except ball and sleeve.

좌굴해석을 이용한 리드프레임 타발용 펀치의 보강설계 (Design of the Stiffened Punch for Stamping of Lead Frame by Buckling Analysis)

  • 고대철;이인수;안병환;김병민
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.68-75
    • /
    • 2006
  • The lead frame manufactured by stamping process plays an important role in connecting semiconductor to PCB board. As a result of the miniaturization of semiconductor, its corresponding lead frame punch has been narrow. In case of the punch with high slenderness ratio such as lead frame punch, the punch can be broken suddenly due to buckling. To prevent the fracture of lead frame punch, some manufacturers have experientially attached stiffeners to weak parts of punch. The purpose of this study, therefore, is to suggest the guideline far design of stiffened punch. The optimal position and the number of stiffeners to be attached to punch are investigated by elastic buckling analysis. The elastic buckling analysis consists of the eigenvalue buckling analysis and nonlinear buckling analysis. The critical buckling load of elastic buckling analysis is compared with that of buckling test. Finally, the guideline far attaching stiffeners is suggested through analysis of cross section of lead frame punch such as moment of inertia and eccentricity.

Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite

  • Mohammadimehr, M.;Mohammadi-Dehabadi, A.A.;Akhavan Alavi, S.M.;Alambeigi, K.;Bamdad, M.;Yazdani, R.;Hanifehlou, S.
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.405-422
    • /
    • 2018
  • In this research, experimental tensile test and manufacturing of carbon nanotube reinforced composite beam (CNTRC) is presented. Also, bending, buckling, and vibration analysis of CNTRC based on various beam theories such as Euler-Bernoulli, Timoshenko and Reddy beams are considered. At first, the experimental tensile tests are carried out for CNTRC and composite beams in order to obtain mechanical properties and then using Hamilton's principle the governing equations of motion are derived for Euler Bernoulli, Timoshenko and Reddy theories. The results have a good agreement with the obtained results by similar researches and it is shown that adding just two percent of carbon nanotubes increases dimensionless fundamental frequency and critical buckling load as well as decreases transverse deflection of composite beams. Also, the influences of different manufacturing processes such as hand layup and industrial methods using vacuum pump on composite properties are investigated. In these composite beams, glass fibers used in an epoxy matrix and for producing CNTRC, CNTs are applied as reinforcement particles. Applying two percent of CNTs leads to increase the mechanical properties and increases natural frequencies and critical buckling load and decreases deflection. The obtained natural frequencies and critical buckling load by theoretical method are higher than other methods, because there are some inevitable errors in industrial and hand layup method. Also, the minimum deflection occurs for theoretical methods, in bending analysis. In this study, Young's and shear modulli as well as density are obtained by experimental test and have not been used from the results of other researches. Then the theoretical analysis such as bending, buckling and vibration are considered by using the obtained mechanical properties of this research.

강관비계의 좌굴특성에 관한 연구 (A Study on the Buckling Characteristics of Steel Pipe Scaffold)

  • 백신원;송인용
    • 한국안전학회지
    • /
    • 제25권1호
    • /
    • pp.57-61
    • /
    • 2010
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Scaffoling is a temporary frame used to support people and material in the construction or repair of buildings and other large structures. It is usually a modular system of metal pipes, although it can be made out of other materials. Bamboo is still used in some Asian countries like China. The purpose of a working scaffold is to provide a safe place of work with safe access suitable for the work being done. In construction site, steel pipes are usually used as scaffolds. In this study, scaffolding systems which is changed according to sleeper and joist space were measured by buckling test. Buckling load of respective scaffolding system was analyzed by structural analysis program(MIDAS). Buckling load of scaffold with/without wall connection and footboard was got by test and structural analysis. According to these results,we know that scaffolding system of case 3 is suitable. Buckling load of scaffold with wall connection is higher than without wall connection. So wall connection is important in scaffoling systems. Footboard in the scaffolding systems is not effective against promotion of buckling load. Finally, the present study results will be used to design scaffolding systems safely in the construction sites.

L-헤더 시스템의 좌굴 거동에 관한 실험 연구 (Experimental Study on the Buckling Behavior of L-Shaped Header System)

  • 박완순;김갑득
    • 한국강구조학회 논문집
    • /
    • 제14권5호통권60호
    • /
    • pp.665-674
    • /
    • 2002
  • 스틸 스터드 구조물에서 사용되고 있는 기존 I형, 박스형 헤더는 시공성, 경제성 측면에서 여러 가지 문제점을 노출하고 있다. 이러한 문제점을 극복하기 위해 선진국에서는 냉간성형강을 L형으로 절곡한 L-헤더를 활발히 사용하고 있다. 그러나 국내에서는 이에 대한 연구가 부족하여 L-헤더를 사용하지 못하고 있는 실정이다. 본 연구에서는 이러한 문제점을 해결하기 위해 L-헤더에 대한 좌굴해석 및 휨 실험을 수행하였으며, 실험결과를 미국 철강협회(AISI, American Iron and Steel Institute) 설계기준과 비교하였다. 휨 실험결과 중력방향 하중이 작용하는 경우에는 국부좌굴이, 인발하중이 작용하는 경우에는 뒤틀림 좌굴이 발생되는 것으로 관찰되었다. 그리고 실험에서 측정된 좌굴 하중을 비교한 결과 AISI 설계기준에 제시된 공칭하중을 상회하는 것으로 확인되었다.

Buckling analysis of functionally graded plates resting on elastic foundation by natural element method

  • Cho, J.R.
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.171-181
    • /
    • 2022
  • Functionally graded material (FGM) has been spotlighted as an advanced composite material due to its excellent thermo-mechanical performance. And the buckling of FGM resting on elastic foundations has been a challenging subject because its behavior is directly connected to the structural safety. In this context, this paper is concerned with a numerical buckling analysis of metal-ceramic FG plates resting on a two-parameter (Pasternak-type) elastic foundation. The buckling problem is formulated based on the neutral surface and the (1,1,0) hierarchical model, and it is numerically approximated by 2-D natural element method (NEM) which provides a high accuracy even for coarse grid. The derived eigenvalue equations are solved by employing Lanczos and Jacobi algorithms. The numerical results are compared with the reference solutions through the benchmark test, from which the reliability of present numerical method has been verified. Using the developed numerical method, the critical buckling loads of metal-ceramic FG plates are parametrically investigated with respect to the major design parameters.

Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method

  • J.R., Cho
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.723-731
    • /
    • 2022
  • Functionally graded materials (FGMs) have been spotlighted as an advanced composite material, accordingly the intensive studies have focused on FGMs to examine their mechanical behaviors. Among them is thermal buckling which has been a challenging subject, because its behavior is connected directly to the safety of structural system. In this context, this paper presents the numerical analysis of thermal buckling of metal-ceramic functionally graded (FG) plates. For an accurate and effective buckling analysis, a new numerical method is developed by making use of (1,1,0) hierarchical model and 2-D natural element method (NEM). Based on 3-D elasticity theory, the displacement field is expressed by a product of 1-D assumed thickness monomials and 2-D in-plane functions which are approximated by NEM. The numerical method is compared with the reference solutions through the benchmark test, from which its numerical accuracy has been verified. Using the developed numerical method, the critical buckling temperatures of metal-ceramic FG plates are parametrically investigated with respect to the major design parameters.