• Title/Summary/Keyword: Buccal bone

Search Result 324, Processing Time 0.026 seconds

The effect of NaF on bone and tooth resorption around an anchor tooth during a rapid maxillary expansion procedure (급속상악확대술 시행 후 지대치와 지지골 표면에 나타나는 치근흡수의 불화나트륨 단독투여를 통한 예방에 대하여)

  • Min, Seungki;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.34 no.6 s.107
    • /
    • pp.526-536
    • /
    • 2004
  • This study was undertaken to determine the effect of a 2.2mg/Kg/day intraoral administration of NaF on the amount of root resorption and osteoclastic activity during or after a rapid maxillary expansion procedure. Ten puerile female dogs were divided into two groups: a control group and a NaF-treated group. A fixed type maxillary expansion device was delivered to all dogs. The appliance was activated twice daily throughout a 20-day period, causing a 5-mm expansion of maxillary bone. After the expansion procedure, the animals were sacrificed at days 0, 15, 30, 45, and 60 of the retention period. The buccal surface of the root of each maxillary canine was examined by means of a surface electron microscope (SEM). Using SEM, web-like resorption lacunae were observed on the bone or the tooth surface at the site of osteoclastic activity; these observations were verified by histological methods. No peculiar resorption lacunae were found in the apical tip of the roots of either the control group or the NaF-treated group animals. The NaF-treated retention group was found to have less resorption lacunae formation on day 45 and day 60. The preventative effect of NaF on resorption lacunae formation on the surface of the bone covering the anchor tooth was confirmed. Larger areas of resorption lacunae were found on the surface of the bone covering the canines in the control group animals, as compared to those of the NaF-treated group, especially on day 30 and day 60. Using SEM, the present study revealed a difference between the control group and the NaF-treated group in the prevalence and the size of the resorption lacunae formation on the cemental root surface. The preventative effect of NaF on bone resorption was confirmed. Further studies concerned with the optimum concentration of NaF that has an effect in vivo are necessary.

Three dimensional photoelastic study on the initial stress distributions of alveolar bone when retracted by lingual K-loop archwire (Lingual K-loop archwire를 이용한 발치공간 폐쇄시 초기응력 분포에 대한 3차원 광탄성학적 연구)

  • Byun, Bo-Ram;Kim, Sik-Sung;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.32 no.5 s.94
    • /
    • pp.343-353
    • /
    • 2002
  • This study was designed to investigate the stress distribution of alveolar bone in case of on masse retraction with lingual K-loop archwire using the 3-dimensional photoelastic stress analysis followed by stress freezing process. Lingual K-loop archwire which had loop in 15mm height was used and activated by retraction force of 350gm per each side. The results were as follows 1. Central incisor : As the closer side to crown, the larger tensile stress was distributed at both mesial and labial surfaces and the larger compressive stress was distributed at distal surface. As the closer side to root apex, the larger compressive stress was distributed at lingual surface. The compressive stress was distributed at root apex. 2. Lateral incisor : The tensile stress was distributed at the coronal side of mesial surface. The compressive stress was distributed at distal surface. As the closer side to crown, the larger tensile stress was distributed at labial surface. The tensile stress was distributed at coronal side and the compressive stress was distributed at apical side of lingual surface. The compressive stress was distributed at root apex. 3. Canine The tensile stress was distributed at coronal side and the compressive stress was distributed at apical side of mesial surface. The tensile stress was distributed at distal surface. As the closer side to crown, the larger tensile stress was distributed at both mesial and distal surfaces. The compressive stress was distributed at root apex. 4. Second premolar : The tensile stress was distributed at mesial surface. The compressive stress was distributed at coronal side and the tensile stress was distributed at apical side of distal surface. The compressive stress was distributed at coronal side of buccal surface. As the closer side to crown, the larger tensile stress was distributed at lingual surface. The compressive stress was distributed at root apex. 5. First molar . As the closer side to crown, the larger tensile stress was distributed at both mesial and distal surfaces. No stress was distributed at buccal surface and palatal root apex. As the closer side to crown, the larger tensile stress was distributed at both lingual surfaces. The compressive stress was distributed a4 buccal root apexes. 6. Second molar The compressive stress was distributed at all root apexes. As the closer side to crown, the larger compressive stress was distributed at both mesial and lingual surfaces, and the larger tensile stress at both distal and buccal surfaces. Transverse bowing effect was observed in on-masse retraction with lingual K-loop archwire, however vertical towing effect was not. Rather, reverse vortical bowing effect was developed.

FINITE ELEMENT ANALYSIS ON MAXILLARY MOLAR IMPLANT UNDER DIFFERENT C/R RATIO (상악 구치부 임플랜트 보철수복시 치관/치근비에 따른 응력 분포에 대한 유한 요소 분석)

  • Kim, Jin-Ho;Kim, Hyung-Seob;Choi, Dae-Gyun;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.561-573
    • /
    • 2006
  • Statement of the problem: In cases of low bone level in maxilla followed by extraction due to severe periodontitis or enlarged maxillary sinus, crown-root ratio of implant prosthesis will increase. The prognosis of these cases is not good as expected. Purpose : The purpose is to compare stress distribution due to crown-root ratio and effect of splinting between two implants in maxillary molar area under different loads Material and methods: Using ITI($4.1{\times}10$ mm) implant. two finite element models were made(model S: two parallel implants, model A: one of two is 20 degree inclined). Each model was designed in different crown-root ratio(0.7:1, 1:1, 1.25:1) and set cement type gold crown to make it splinted or non-splinted clinical situations. After that, 300 N force was loaded to each model in four ways.(load 1 : middle of occlusal table, load 2 : middle of buccal cusp, load 3 : middle of lingual cusp, load 4 : horizontal load to middle of buccal cusp), and stress distribution was analyzed. Results: On all occasions, stress was concentrated on neck of implant near cortical bone. In the case of inclined implant, stress was increased compared with parallel implants. Under load 1, 2, 3, stress was not increased even when crown-root ratio increases, but under load 4, when crown-root ratio increases, stress also increased. And more stress was concentrated under load 1 than load 2, 3. When crown-root ratio was same, stress under load 1, 2, 3 decreased when splinting, but under load 4, stress did not really decrease. Conclusion: Under vertical load, stress distribution related to crown-root ratio did not change. But under horizontal load, stress increased as crown-root ratio increases. Under vertical load, splinting decreased stress but under horizontal load, effect of splinting was decreased as condition of implant changes for the worse such as increase of crown-root ratio, inclined implant.

A study for improving the surgical mess using palatal and buccal mucosal incisions in oral and maxillofacial area (구개점막과 협점막의 절개에 사용되는 칼의 개선을 위한 기초 연구)

  • Seo Byoung-Moo;Choi Jin-Young;Lee Jong-Ho;Kim Myung-Jin;Choung Pill-Hoon
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • Disposable blade is widely used for palatal and oral mucosal incision in oral and maxillofadal surgery nowadays, But its design and durability need for improvement, Especially, there are so many hard tissues intraoral area, such as bone and tooth, therefor the sharpness of the surgical blade was easily destroyed, The purpose of this study was to make basic data for developing new design of surgical blade using in oral and maxillofacial area including for the patients who have cleft lip and palate deformities, Some questionnaires about the usefulness of currently used surgical blades were sent to 150 dentists, the 54 of them made a reply, Secondly, The used-once blade and fresh new blade were examined under the scanning electron microscope with the 4000-times magnification, Lastly, the tissue reaction following the surgical incision with a fresh-new and a used blade on rat buccal cheek mucosa and hard palate was evaluated with light microscope with hematoxilin-eosin staining, The time interval from the surgical trauma to taking a sample were 1 day, 3 days, 7 days, and 14 days, At each time schedule, 2 Sprague-Dawley rats were sacrificed, Many dentists were agreed to need for changing the design of the surgical blades and also demand to improve the durability of the blades, They were also eager to adopt the new design of blade if it was available, The blade used in surgical extraction procedure was heavily damaged in its sharpe edge of number 15 blade, The histological differences were not prominent, but the delayed healing was detected in buccal mucosal defects especially in the surgical group with used blade, There are slight different changes in hard palatal defects between a used and a new blade group, In this study, we could find that there are imperative demanding on improvement of surgical blade design and durability for oral and maxillofadal area, The blade currently using in surgical extraction was easily damaged, The animal model of this study was not perfect for the purpose of this study.

  • PDF

Three Dimensional Study of Miniscrew about Installation Area and Angle (미니스크류 식립 각도 및 부위에 대한 3차원적 연구)

  • Jo, Hee-Sang;Lee, Jin-Woo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.2
    • /
    • pp.203-211
    • /
    • 2008
  • Minimizing damage to anatomical structure is a prerequisite for skeletal anchorage system to install a miniscrew. This research has focused on evaluating the stability and safety of installation in the maxillary molar buccal area, in which most miniscrews are installed clinically and initial fixation is weak. CT (computerized tomography)images were taken for surveying the possibility of damaging to adjucent teeth in accordance with installation angle. If we install a mini-screw($1.2{\times}6.0mm$) in the maxillary molar buccal area, it would be located generally in the 5~8mm upper of CEJ and 3~5mm inner of the cortical bone surface. We has measured the space between roots And comparison has been made for gender and the space between roots in accordance with the 3 different angles of installation(30 degree, 40 degree, 60 degree) in 3 categories. Category 1 : between 1st molar and 2nd molar Category 2 : between 1st molar and 2nd premolar Category 3 : between 1st premolar and 2nd premolar The result are as follow; 1. The space for category 1 was significantly small. 2. For the installation angle, it was safer to install with steeper angle in category 1 and category 2, but not in category 3. According to these results, the installation a miniscrew in category 2, 3 is safer than in category 1. And it is safer to install with steeper angle in category 1 and category 2.

A STUDY ON AMALGAM CAVITY FRACTURE WITH THREE DIMENSIONAL FINITE ELEMENT METHOD (아말감 와동의 파절에 관한 3차원 유한요소법적 연구)

  • Kim, Han-Wook;Um, Chung-Moon;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.345-371
    • /
    • 1994
  • Restorative procedures can lead to weakening tooth due to reduction and alteraton of tooth structure. It is essential to prevent fractures to conserve tooth. Among the several parameters in cavity designs, cavity isthmus and depth are very important. In this study, MO amalgam cavity was prepared on maxillary first premolar. Three dimensional. finite element models were made by serial photographic method and cavity depth(1.7mm, 2.4mm) and isthmus (11 4, 1/3, 1/2 of intercuspal distance) were varied. linear, eight and six-nodal, isoparametric brick elements were used for the three dimensional finite element model. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. Three types model(B, G and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall. Both compressive and tensile forces were distributed directly to the adjacent regions. G model(Gap Distance: 0.000001mm) was assumed the possibility of play at the interface simulated the lack of real bonding between the amalgam and cavity wall (enamel and dentin). When compression occurred along the interface, the forces were transferred to the adjacent regions. However, tensile forces perpendicular to the interface were excluded. R model was assumed non-connection between the restoration and cavity wall. No force was transferred to the adjacent regions. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, von Mises stress, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as follows: 1. G model showed stress and strain patterns between Band R model. 2. B model and G model showed the bending phenomenon in the displacement. 3. R model showed the greatest amount of the displacement of the buccal cusp followed by G and B model in descending order. G model showed the greatest amount of the displacement of the lingual cusp followed by B and R model in descending order. 4. B model showed no change of the displacement as increasing depth and width of the cavity. G and R model showed greater displacement of the buccal cusp as increasing depth and width of the cavity, but no change in the displacement of the lingual cusp. 5. As increasing of the width of the cavity, stress and strain were not changed in B model. Stress and strain were increased on the distal marginal ridge and buccopulpal line angle in G and R model. The possibility of the tooth fracture was increased. 6. As increasing of the depth of the cavity, stress and strain were not changed in B and G model. Stress and strain were increased on the distal marginal ridge and buccopulpal line angle in R model. The possibility of the tooth fracture was increased.

  • PDF

3-D Finite element stress analysis in screw-type, cement-type, and combined-type implant fixed partial denture designs (임플란트 상부보철물의 유지형태에 따른 3차원 유한요소 응력분석)

  • Lee, Sung-Chun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • Statement of problems: Stress analysis on implant components of the combined screw- and cement-retained implant prosthesis has not investigated yet. Purpose: The purpose of this study was to assess the load distribution characteristics of implant prostheses with the different prosthodontic retention types, such as cement-type, screw-type and combined type by using 3-dimensional finite element analysis. Material and methods: A 3-dimensional finite element model was created in which two SS II implants (Osstem Co. Ltd.) were placed in the areas of the first premolar and the first molar in the mandible, and three-unit fixed partial dentures with four different retention types were fabricated on the two SS II implants. Model 1 was a cement-retained implant restoration made on two cement-retained type abutments (Comocta abutment; Osstem Co. Ltd.), and Model 2 was a screw-retained implant restoration made on the screw-retained type abutments (Octa abutment; Osstem Co. Ltd.). Model 3 was a combined type implant restoration made on the cement-retained type abutment (Comocta abutment) for the first molar and the screw-retained type abutment (Octa abutment) for the first premolar. Lastly, Model 4 was a combined type implant restoration made on the screw-retained type abutment (Octa abutment) for the first molar and the cement-retained type abutment (Comocta abutment) for the first premolar. Average masticatory force was applied on the central fossa in a vertical direction, and on the buccal cusp in a vertical and oblique direction for each model. Von-Mises stress patterns on alveolar bone, implant body, abutment, abutment screw, and prosthetic screw around implant prostheses were evaluated through 3-dimensional finite element analysis. Results: Model 2 showed the lowest von Mises stress. In all models, the von Mises stress distribution of cortical bone, cancellous bone and implant body showed the similar pattern. Regardless of loading conditions and type of abutment system, the stress of bone was concentrated on the cortical bone. The von-Mises stress on abutment, abutment screw, and prosthetic screw showed the lower values for the screw-retained type abutment than for the cement-retained type abutment regardless of the model type. There was little reciprocal effect of the abutment system between the molar and the premolar position. For all models, buccal cusp oblique loading caused the largest stress, followed by buccal cusp vertical loading and center vertical loading. Conclusion: Within the limitation of the FEA study, the combined type implant prosthesis did not demonstrate more stress around implant components than the cement type implant prosthesis. Under the assumption of ideal passive fit, the screw-type implant prosthesis showed the east stress around implant components.

EFFECT OF THE LATENCY PERIOD ON ALVEOLAR RIDGE DISTRACTION USING THE INTRAORAL DISTRACTION DEVICE IN DOGS (구내 신연장치를 이용한 치조골 신연에 미치는 잠복기의 영향)

  • Oh, Yu-Keun;Oh, Hee-Kyun;Ryu, Sun-Youl
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.23 no.4
    • /
    • pp.324-331
    • /
    • 2001
  • The present study was aimed to investigate the effects of latency period on alveolar ridge distraction using the intraoral distraction device. Nine adult mongrel dogs of either sex, weighing about 15kg, were used. They were divided into 3-day, 5-day, and 7-day groups according to the latency period. The left upper and lower premolars and first molars were extracted. Twelve weeks after the extraction, an osteotomy was performed and the distraction device was applied. After the latency period, the distraction was applied at a rate of 1.2mm for 8 days. The distraction device was left in place for 2 weeks to allow consolidation and was then removed. The animals were sacrified at 8 weeks after completion of distraction and were examined macroscopically, radiographically, and histologically. After completion of the distraction, the alveolar crest protruded prominently, showing the vertical augmentation of the alveolar bone. Soft tissues were broken down after the 6th day of distraction in 3-day latency group, and premature union occurred on the 7th day of distraction in the 7-day latency group. The average distance was $9.40{\pm}0.3mm$ in 3-day latency group, $9.35{\pm}0.1mm$ in 5-day latency group, and $8.85{\pm}0.1mm$ in 7-day latency group. In the radiograph taken at 8 weeks after distraction, there was slight bone resorption around the medial and distal edges of the alveolar bone segment, and a new bone deposition was observed in the neighboring alveolar crest area in all groups. Fibrous tissues were present in a part of the buccal cortical bone area of the distraction gap, and the woven and lamellar bones were observed in the distracted gap. There were bony bridges in the distraction gap in all animals examined. These results suggest that optimal time of latency period on alveolar ridge distraction using the intraoral distraction device is about 5 days in dogs, and about 7days in human beings.

  • PDF

In situ dental implant installation after decontamination in a previously peri-implant diseased site: a pilot study

  • Kim, Young-Taek;Cha, Jae-Kook;Park, Jung-Chul;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.1
    • /
    • pp.13-19
    • /
    • 2012
  • Purpose: The aim of this study was to examine whether a previous peri-implantitis site can affect osseointegration, by comparing implant placement at a site where peri-implantitis was present and at a normal bone site. A second aim of this study was to identify the tissue and bone reaction after treating the contaminated implant surface to determine the optimal treatment for peri-implant diseases. Methods: A peri-implant mucositis model for dogs was prepared to determine the optimal treatment option for peri-implant mucositis or peri-implantitis. The implants were inserted partially to a length of 6 mm. The upper 4 mm part of the dental implants was exposed to the oral environment. Simple exposure for 2 weeks contaminated the implant surface. After 2 weeks, the implants were divided into three groups: untreated, swabbed with saline, and swabbed with $H_2O_2$. Three implants from each group were placed to the full length in the same spot. The other three implants were placed fully into newly prepared bone. After eight weeks of healing, the animals were sacrificed. Ground sections, representing the mid-buccal-lingual plane, were prepared for histological analysis. The analysis was evaluated clinically and histometrically. Results: The untreated implants and $H_2O_2$-swabbed implants showed gingival inflammation. Only the saline-swabbed implant group showed re-osseointegration and no gingival inflammation. There was no difference in regeneration height or bone-to-implant contact between in situ implant placement and implant placement in the new bone site. Conclusions: It can be concluded that cleaning with saline may be effective in implant decontamination. After implant surface decontamination, implant installation in a previous peri-implant diseased site may not interfere with osseointegration.

Tissue changes of pulp and periodontium on rapid tooth movement with osteotomy in dogs (골절단을 이용한 급속 치아이동 후 치수 및 치주조직 변화)

  • Kang, Kyung-Hwa;Kim, Eun-Cheol;Lee, Sun-Kyung;Lim, Chae-Woong;Matduda, Kiku;Tae, Ki-Chul;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.34 no.2 s.103
    • /
    • pp.131-142
    • /
    • 2004
  • The movement of tooth-bone segments by osteotomy can simultaneously shift tooth and surrounding alveolar bone in a relatively short period. The purpose of this study was to evaluate the tissue changes in pulp, periodontal ligament, and alveolar bone in rapid tooth-bone movement with osteotomy. The mandibular 3rd premolar of a dog was extracted and cortical bones of the buccal and lingual area were eliminated, and then cortical bones around the mesial and distal area of root, and below the root apex of the mandibular 4th premolar were osteotomized. After a one-week latency period, a tooth-borne distraction device was activated for 6 days. And pulp, periodontal ligament and alveolar bone were evaluated clinically, radiologically, histologically and immunohistochemically at 0, 1, 2, 4, 6, 8 weeks of the consolidation Period and conclusions were roached as follows. 1. Latency period didn't affect total amount or tooth movement and healing process of tissue during consolidation period. 2. Bone formation continued through 8 weeks of consolidation in distracted side, with a high peak at 1-2 weeks, and the lowest at 6-8 weeks or consolidation. 3. At 1 week of consolidation, alveolar bone resorption, osteoclast appearance and inflammatory cell infiltration were the most active, and dentinoclasts characteristically appeared on the pulp and pressure side of the periodontal ligament. 4. The expression of $TGF-\beta$ was area-specific, as it was strong-positive at bone matrix, osteoblast osteoclast of alveolar bone, and dentinoclast inside pulp, but weak in pulp, cementoblast and acellular cementum. 5. The expression of $TGF-\beta$ was generally observed at the initial 1-2 weeks of consolidation at vessels, periodontal ligament cells, and osteoblast near alveolar bone on the distraction side of the periodontal ligament, and was significantly decreased after 6 weeks of consolidation.