• Title/Summary/Keyword: Bubble mixing

Search Result 65, Processing Time 0.025 seconds

A Study on Propulsion Performance of Underwater Ram-Jet with Optimized Nozzle Configuration (최적 노즐형상을 갖는 수중램제트의 추진성능에 관한 연구)

  • Kang, H.K.;Kim, Y.T.;Lee, Y.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.42-52
    • /
    • 1997
  • The basic principle of underwater ram-jet as a unique marine propulsion concept showing vary high cruise speed range(e. g. 80-100 knots) is the thrust production by the transfer of the potential energy of compressed gas to the operating liquid through kinetic mixing process. This paper is aimed to investigate the propulsive efficiency of the nozzle flow in underwater ram-jet at the speed of 80 knots for the buried type vessel. The basic assumption of the theoretical analysis is that mixture of water and air can be treated as incompressible gas. For an optimized nozzle configuration obtained from the performance analysis, preliminary data for performance evaluation are obtained and effects of nozzle inner wall friction, ambient temperature, ambient pressure, water density, gas velocity, bubble radius, flow velocity, diffuser area ratio, mass flow ratio and water velocity gradient are investigated.

  • PDF

Investigation for Optimization of Ultrasonic Soil-Washing Process for Remediation of Diesel Contaminated Soil (유류오염토양의 복원을 위한 초음파 토양세척 공정의 최적화에 대한 연구)

  • Park, Beom-Guk;Son, Young-Gyu;Hwang, An-Na;Khim, Jee-Hyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.101-105
    • /
    • 2011
  • Determination of ultrasonic frequency and experimental design approach to optimization of ultrasonic soil-washing process for remediation of diesel contaminated soil were investigated. Ultrasonic frequencies of 35, 72, and 100 kHz were used for determination of optimal frequency. $MINITAB^{(R)}$ program was used for experimental design of optimal washing condition. The optimal ultrasonic frequency was 35 kHz. Even though the number of cavitation bubble is little, however cavitation bubbles involving larger energy compared with high frequency was generated. Therefore, the removal efficiency at low frequency was higher than at high frequency. However the input energy has to be considered when the process is applied. The statistical tests from a factorial experiment shows that the application of ultrasound and mechanical mixing are the most important factor for design of an ultrasonic soil washing process. The lab-scale experiments are required to get the optimal condition of ultrasound and mechanical mixing for application of ultrasonic soil washing process.

Development of a drift-flux model based core thermal-hydraulics code for efficient high-fidelity multiphysics calculation

  • Lee, Jaejin;Facchini, Alberto;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1487-1503
    • /
    • 2019
  • The methods and performance of a pin-level nuclear reactor core thermal-hydraulics (T/H) code ESCOT employing the drift-flux model are presented. This code aims at providing an accurate yet fast core thermal-hydraulics solution capability to high-fidelity multiphysics core analysis systems targeting massively parallel computing platforms. The four equation drift-flux model is adopted for two-phase calculations, and numerical solutions are obtained by applying the Finite Volume Method (FVM) and the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)-like algorithm in a staggered grid system. Constitutive models involving turbulent mixing, pressure drop, and vapor generation are employed to simulate key phenomena in subchannel-scale analyses. ESCOT is parallelized by a domain decomposition scheme that involves both radial and axial decomposition to enable highly parallelized execution. The ESCOT solutions are validated through the applications to various experiments which include CNEN $4{\times}4$, Weiss et al. two assemblies, PNNL $2{\times}6$, RPI $2{\times}2$ air-water, and PSBT covering single/two-phase and unheated/heated conditions. The parameters of interest for validation include various flow characteristics such as turbulent mixing, spacer grid pressure drop, cross-flow, reverse flow, buoyancy effect, void drift, and bubble generation. For all the validation tests, ESCOT shows good agreements with measured data in the extent comparable to those of other subchannel-scale codes: COBRA-TF, MATRA and/or CUPID. The execution performance is examined with a mini-sized whole core consisting of 89 fuel assemblies and for an OPR1000 core. It turns out that it is about 1.5 times faster than a subchannel code based on the two-fluid three field model and the axial domain decomposition scheme works as well as the radial one yielding a steady-state solution for the OPR1000 core within 30 s with 104 processors.

Characteristics of Matrix Retaining Electrolyte in a Phosphoric Acid Fuel Cell Analyzed by A.C. Impedance Spectroscopy (복소임피던스법에 의한 인산형 연료전지용 전해질 매트릭스 특성)

  • 윤기현;장재혁;허재호;김창수;김태희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.189-196
    • /
    • 1995
  • Materials retaining electrolyte of a phosphoric acid fuel cell (PAFC) have been prepared with SiC powder to SiC whisker mixing ratios of 1:1, 1:2, 1:3, 1:4, 0:1 by a tape casting method. When 3wt% dispersant (sorbitan monooleate) is added to a matrix, the porosity of the matrix decreases a little while the bubble pressure and area of the matrix increase remarkably in comparison with no dispersant content. Effect of the electrolyte resistance and the polarization resistance on perfomance of a PAFC has been investigated using A.C. impedance spectroscopy. With the increase of whisker content, the electrolyte resistance decreases due to the increase of porosity and acid absorbancy, and the polarization resistance increases due to the increase of surface roughness. The polarization resistance affects current density predominantly at the higher potential than 0.7V becuase the polarization resistance is considrably larger than the electrolyte resistance. Both the electrolyte resistance and the polarization resistance affect current density near 0.7V of the fuel cell operating potential because they have similar values. The electrolyte resistance affects current density predominantly at the lower potential than the fuel cell operating potential because the electrolyte resistance is larger than the polarization resistance.

  • PDF

Effect of Various Shapes of Mixer Geometry on Two-Phase Flow Patterns in a Micro-Channel (마이크로 채널 내 혼합부 형상이 2상 유동 양식에 미치는 영향에 대한 연구)

  • Lee, Kwan Geun;Lee, Jun Kyoung;Park, Taehyun;Kim, Gyo Nam;Park, Eun Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The effect of inlet mixer geometries on the two-phase flow patterns in square micro-channel with $600{\times}600{\mu}m$ was investigated experimentally in this paper. The 4 different mixer configurations based on the Y, Impacting, and two T types (gas and liquid inlets were switched) were used. The test fluids were nitrogen and water. The liquid and gas superficial velocities were 0.01~10 m/s and 0.1~100 m/s, respectively. Several distinctive flow patterns, namely, annular, slug-annular, slug, slug-bubbly, bubbly, and churn flow could be seen. The flow pattern maps for each mixer were suggested, and it can be concluded that two-phase flow patterns are not very sensitive to the mixer geometries. But the mixing behaviors of gas and liquid for each mixer were different for slug and bubbly flow. Thus, the characteristics of slug and bubble for each case were not same.

Processing of Polyurethane/polystyrene Hybrid Foam and Numerical Simulation

  • Lee, Won Ho;Lee, Seok Won;Kang, Tae Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.3 no.4
    • /
    • pp.159-168
    • /
    • 2002
  • Polyurethane foams were produced by using a homogenizer as a mixing equipment. Effects of stirring speed on the foam structure were investigated with SEM observations. Variation of the bubble size, density of the foam, compressive strength, and thermal conductivity were studied. A hybrid foam consisting of polyurethane foam and commercial polystyrene foam is produced. Mechanical and thermal properties of the hybrid foam were compared with those of pure polyurethane foam. Advancement of flow front during mold filling was observed by using a digital camcorder. Four types of mold geometry were used for mold filling experiments. Flow during mold filling was analyzed by using a two-dimensional control volume finite element method. Variation of foam density with respect to time was experimentally measured. Creeping flow, uniform density, uniform conversion, and uniform temperature were assumed for the numerical simulation. It was assumed for the numerical analysis that the cavity has thin planar geometry and the viscosity is constant. The theoretical predictions were compared with the experimental results and showed good agreement.

Development of Oil Flushing System with Microbubble Generator (마이크로 버블 발생장치와 결합된 오일 플러싱 장치 개발)

  • Hong, Sung-Ho;Lee, Kyung-Hee;Jeong, Nam-Wha
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.109-114
    • /
    • 2022
  • This paper reports the development of an oil flushing system combined with a microbubble generator. Oil flushing plays a crucial role in regulating the lubricant's performance during the lubricant replacement process. Moreover, harmful contaminants, such as sludge, wear particles, and rust, from piping systems or lubrication system can be removed by oil flushing. Oil flushing aims to increase the system's efficiency using a dedicated flushing oil, increasing of the supply pressure and generating a vortex. In addition, it helps the mechanical system or equipment achieve peak performance and reduces the potential for premature failure. However, the contaminant-removal applications of existing oil flushing system are limited. In this research, we aim to improve the performance of oil flushing system by incorporating a microbubble generator, which uses the venture effect to generate microbubbles and mixes them with lubricant. The microbubbles in the blended lubricant remove contaminants from the lubrication system more effectively. Structural mechanics and fluid dynamics are analyzed through fluid-structure interaction (FSI) analysis, and the numerical analysis results are used for the designing the system. The magnitude of the maximum stress is investigated based on the pressure results obtained by the CFD analysis; through the CFD analysis, the mixing ratio of air (bubble) and lubricant is evaluated using the volume of fluid (VOF) model according to the working conditions.

Numerical Sudy on Bubbling Fluidized Bed Reactor for Fast Pyrolysis of Waste Lignocelluosic Biomass (폐목질계 바이오매스의 급속열분해 기포유동층 반응기에 대한 수치해석적 연구)

  • Lee, Ji Eun;Choi, Hang Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.710-716
    • /
    • 2013
  • New and renewable energy sources have drawn attention because of climate change. Many studies have been carried out in waste-to-energy field. Fast pyrolysis of waste lignocelluosic biomass is one of the waste-to-energy technologies. Bubbling fluidized bed (BFB) reactor is widely used for fast pyrolysis of the biomass. In BFB pyrolyzer, bubble behavior influences on the chemical reaction. Accordingly, in the present study, hydrodynamic characteristics and fast pyrolysis reaction of waste lignocellulosic biomass occurring in a BFB pyrolyzer are scrutinized. The computational fluid dynamics (CFD) simulation of the fast pyrolysis reactor is carried out by using Eulerian-Granular approach. And two-stage semi-global kinetics is applied for modeling the fast pyrolysis reaction of waste lignocellulosic biomass. To summarize, generation and ascendant motion of bubbles in the bed affect particle behavior. Thus biomass particles are well mixed with hot sand and consequent rapid heat transfer occurs from sand to biomass particles. As a result, primary reaction is observed throughout the bed. And reaction rate of tar formation is the highest. Consequently, tar accounts for 66wt.% of the product gas. However, secondary reaction occurs mostly in the freeboard. Therefore, it is considered that bubble behavior and particle motions hardly influences on the secondary reaction.

Calcium-doped zinc oxide nanocrystals as an innovative intracanal medicament: a pilot study

  • Gabriela Leite de Souza;Thamara Eduarda Alves Magalhaes;Gabrielle Alves Nunes Freitas;Nelly Xiomara Alvarado Lemus;Gabriella Lopes de Rezende Barbosa;Anielle Christine Almeida Silva;Camilla Christian Gomes Moura
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.38.1-38.15
    • /
    • 2022
  • Objectives: This study investigated the cytotoxicity, radiopacity, pH, and dentinal tubule penetration of a paste of 1.0% calcium-doped zinc oxide nanocrystals (ZnO:1.0Ca) combined with propylene glycol (PRG) or polyethylene glycol and propylene glycol (PEG-PRG). Materials and Methods: The pastes were prepared by mixing calcium hydroxide [Ca(OH)2] or ZnO:1.0Ca with PRG or a PEG-PRG mixture. The pH was evaluated after 24 and 96 hours of storage in deionized water. Digital radiographs were acquired for radiopacity analysis and bubble counting of each material. The materials were labeled with 0.1% fluorescein and applied to root canals, and images of their dentinal tubule penetration were obtained using confocal laser scanning microscopy. RAW264.7 macrophages were placed in different dilutions of culture media previously exposed to the materials for 24 and 96 hours and tested for cell viability using the MTT assay. Analysis of variance and the Tukey test (α = 0.05) were performed. Results: ZnO:1.0Ca materials showed lower viability at 1:1 and 1:2 dilutions than Ca(OH)2 materials (p < 0.0001). Ca(OH)2 had higher pH values than ZnO:1.0Ca at 24 and 96 hours, regardless of the vehicle (p < 0.05). ZnO:1.0Ca pastes showed higher radiopacity than Ca(OH)2 pastes (p < 0.01). No between-material differences were found in bubble counting (p = 0.0902). The ZnO:1.0Ca pastes had a greater penetration depth than Ca(OH)2 in the apical third (p < 0.0001). Conclusions: ZnO:1.0Ca medicaments presented higher penetrability, cell viability, and radiopacity than Ca(OH)2. Higher values of cell viability and pH were present in Ca(OH)2 than in ZnO:1.0Ca.

Mechanical Characteristics of Asphalt Stabilized Soil (아스팔트 안정처리토의 역학적 특성 연구)

  • 박태순;최필호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.189-197
    • /
    • 2003
  • The treatment and hauling of surplus soils which occur from construction activity are costly and have been demanding a reasonable recycling method. This study presents laboratory test results regarding the mechanistic properties of asphalt stabilized soils. The foamed asphalt equipment which generates the asphalt bubble was used to mix the soil. The marshall stability, indirect tensile test, resilient modulus, creep test and triaxial test(UU) were conducted to find out the performance of the asphalt stabilized soil. The test results were compared with the samples that fabricated in different conditions(the samples without asphalt and the reinforced samples using 2% cement). The inclusion of the asphalt in the soil has improved the marshall stability, resilient modulus and moisture susceptibility, and the addition of the 2% cement has even more increased these properties. The amount of the fines and the optimum moisture contents for mixing affects the mechanistic properties and important parameters for mix design.