• Title/Summary/Keyword: Bubble Resonance Frequency

Search Result 12, Processing Time 0.03 seconds

Noise Reduction Effect of an Air Bubble Layer on an Infinite Flat Plate Considering the Noise of Multi-bubbles (다중기포 발생소음을 고려한 무한평판 주위에 형성된 수중 기포층의 방사소음 감소 효과)

  • Kim, Jong-Chul;Heo, Bo-Hyun;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1222-1230
    • /
    • 2009
  • A theoretical model was developed to compute the effect of a bubble layer in reducing the radiation noise generated by a force applied on an infinite flat plate considering the noise of multi-bubbles. Using the model, the effectiveness of a bubble layer in reducing the structure-borne noise of the plate was evaluated to consider various parameters such as the source noise levels, the thickness of bubble layers, the volume fractions and the frequency characteristics of bubbly fluids. Considering the noise of multi-bubbles, the actual reduction effect of radiation noise using a bubble layer was expected in cases of high source levels, high volume fractions of bubbles and large thickness of the bubble layer above the resonance frequency of the bubble layer. Accordingly, it is recommended that the thickness of a bubble layer, the source noise level and the characteristics of bubbly fluids should be optimized cautiously to maximize noise reduction effects.

Noise Reduction Effect of an Air Bubble Layer on an Infinite Flat Plate (무한 평판 주위에 형성된 수중 기포층의 방사소음 감소 효과)

  • Kim, Jong-Chul;Oh, Joon-Seok;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.168-176
    • /
    • 2007
  • The mixture sound speed in bubbly fluids is highly dispersive due to differences of the density and compressibility between bubbles and fluids. The dispersion range in bubbly fluids expands to a higher frequency than the resonance frequency of an air bubble. A theoretical model was developed to compute the reduction of radiation noise that is generated by a force applied on an infinite flat plate using a bubble layer as a compliant baffle. For evaluating the effectiveness of a bubble layer in reducing the structure-borne noise of an infinite elastic plate, the noise reduction levels for various parameters such as the thickness of bubble layers, the volume fractions and the distribution types of bubbly fluids are calculated numerically. The noise reduction effect of an air bubble layer on an infinite flat plate is considerable level and similar to the tendency of dispersion of bubbly fluids. It is recommended that the thickness of a bubble layer should be increased with keeping an appropriate volume fraction of an air bubble for the most effective reduction of the radiation noise.

Analysis on the Forced Oscillation of Nonlinear Oscillators (비선형 진동자의 강제 진동에 관한 해석)

  • Karng, S.;Lee, J.;Jeon, J.;Kwak, H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.585-590
    • /
    • 2000
  • Problems involved in the numerical analysis on the forced oscillation of nonlinear oscillators such a microbubble oscillation under ultrasound and Duffing oscillator were discussed. One of the problems is proper choice of the time scale of the driving force. which is related to the numerical artifacts due to the mismatch between the natural frequency of an oscillator(or bubble) and the characteristic frequency of the applied force. Such problem may occur in a nonlinear oscillator whose behavior is crucially dependent on the frequency of the applied force. The artificial resonance problem during the numerical evaluation of such nonlinear systems was also discussed.

  • PDF

Definition and Improvement of the Sound which was Generated by Bubbles at the Accumulator of the Evaporator (증발기 어큐뮤레이터에서의 버블 소음 규명 및 개선)

  • 박정희;장의영;박윤서
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.513-519
    • /
    • 1996
  • This paper is concerned with the bubble sound at the accumulator which is generated by the difference of the high pressure side and the low pressure side in the cycle of the refrigerator. The causes of the bubble sound generation are verified by the visualized test of the operating refrigerant flow at the accumulator and the measurements of the temperature and pressure. Two cases were tested, one with the accumulator has a orifice and the other with the accumulator hasn't a orifice. So that, it is presented the comparison of the bubble sound levels and spectrums in each cases. To predict the bubble sizes when they are generated, the linearized equation driven by Strasberg is used.

  • PDF

Analysis of Acoustic Back Scattering from Bubble Columns in Water (수중 기포기둥에 의한 음파의 후방 산란특성 분석)

  • Park, K.-J.;Yoon, S.-W.;Roy, R.A.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.36-43
    • /
    • 1991
  • Acoustic backscattering from a buble column in water was studied theoretically and experimentally. For theoretical analysis a general scattering theory was used by assuming the bubble column to be lumped element scatterer which can be characterized by its shape, void fraction and dimensions. When the void fraction is less than 1% and the incident frequency is higher than individual bubble resonance frequencies, the experimental results show that the acoustic backscattering from a bubble column depends mainly on the void fraction rather than the individual bubble sizes. It was also theoretically and experimentally observed that the acoustic backscattering levels were increased and their peaks moved to the lower frequency regin by raising the void fraction of bubble column.

  • PDF

Investigation on Shapes and Acoustic Characteristics of Air Bubbles Generated by an Underwater Nozzle (수중 노즐에서 발생하는 기포의 형상 및 음향 특성 연구)

  • Kim, Jong-Chul;Oh, Joon-Seok;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.190-197
    • /
    • 2006
  • It is well known that the acoustic characteristics of the sea are significantly affected by bubbles which have their own inherent characteristics at the undersea. In this study, the shape and acoustic characteristics of air bubbles generated by an underwater nozzle are calculated numerically, and are measured with a high speed camera and a hydrophone at various air flow rates in the experimental apparatus. As a result of analysis, the shape calculated numerically well matched with measured values at low flow rates, but in case of relatively higher flow rates. the use of correction coefficient is needed for more accurate estimation of the bubble shape. And also the rising velocity of a single bubble is constant regardless of both the bubble size and the flow rate. and the acoustic signal generated when the bubble is produced by an underwater nozzle has the same characteristic of natural frequency of the bubble pulsation, and is agreed with Minnaert's equation if the correction coefficient is considered in accordance with the flow rate.

The Effects of Ocean Surface Bubbles on Sound Wave Transmission (표층 해상의 기포가 음파전달에 미치는 영향)

  • Im, Byun-Kook;Shim, Tae-Bo;Kim, Young-Gyu;Park, Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.187-197
    • /
    • 2009
  • The bubbles are created by waves, raindrops, water collision, vessels sailing at sea, life activities of various marine organisms in the ocean and other sources. The bubbles affect the intensity and sound speed of acoustic waves in the ocean. We indirectly observed bubbles in order to understand the creation of and the effects of bubbles on sound waves, using an Acoustic Bubble Spectrometer (ABS) and CTD, from 04:00 to 17:00, 19 September, 2007. We also analyzed the correlation of wind speed and the generation of bubbles, the amount of bubbles, and the sound speed variation at 50, 60, and 70 kHz. Finally, We simulated the way how bubbles affect sound transmission based on the analysis results.

Experimental analysis and modeling for predicting bistatic reverberation in the presence of artificial bubbles (인공기포 존재 환경에서의 양상태 잔향음 예측을 위한 해상 실험 분석 및 모델링 연구)

  • Yang, Wonjun;Oh, Raegeun;Bae, Ho Seuk;Son, Su-Uk;Kim, Da Sol;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.426-434
    • /
    • 2022
  • Bubbles generated by various causes in the ocean are known to persist for long periods of time. Although the volume occupied by bubbles in the ocean is small, the presence of bubbles in ocean due to resonance and attenuation greatly affects the acoustic properties. Accordingly, bistatic reverberation experiment was performed in the ocean where artificial bubbles exist. A number of transducers and receivers were installed on 6 buoys arranged in a hexagonal shape, and blowing agents were dropped in the center of the buoy to generate bubbles. For reverberation modeling that reflects acoustic characteristics changed by bubbles, the spatial distribution of bubbles was estimated using video data and received signals. A measurement-based bubble spectral shape was used, and it was assumed that the bubble density within the spatial distribution of the estimated bubble was the same. As a result, it was confirmed that the bubble reverberation was simulated in a time similar to the measured data regardless of the bubble density, and the bubble reverberation level similar to the measured data was simulated at a void fraction of about 10-7 ~ 10-6.8.

Characteristics of High Frequency Backscattering Strength by Zostera Marina (Seagrass) Bed (거머리말 (잘피) 서식지의 고주파 후방산란 특성)

  • Yoon Kwan-Seob;Na Jungyul;La Hyoungsul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.97-102
    • /
    • 2005
  • Acoustic experiments were performed with Zostera marina to study the characteristics of backscattering of seagrass living in the bottom interface. Field experiments were conducted in the Dongdae man, Namhae for day and night to consider the effects of air-bubble from photosynthesis of seagrass. The multi-frequency (30$\~$120 kHz) responses were measured and the distributions of back scattering strength due to the movement of seagrass were Presented by PDF (probability density function) at 120 120 kHz. The results were shown both the frequency dependence and diurnal variation of the backscattering strength between day and night. This diurnal variation may be caused by the amount of oxygen in dissolved bubbles formed by Photosynthesis of seagrass.

Lock-on states of a circular cylinder in the oscillatory flow (진동 유동장에서 원형 실린더의 lock-on 해석)

  • Kim Wontae;Sung Jaeyong;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.245-248
    • /
    • 2002
  • Vortex lock-on or resonance in the flow behind a circular cylinder is visualized by a time-resolved PIV when a single frequency oscillation is superimposed on the mean incident velocity. Measurements are made of the $K{\'{a}}rm{\'{a}}n$ vortices in the wake-transition regime at the Reynolds number 360. Basically, natural shedding state is observed to compare with lock-on state. Wake motion by the change of the shedding frequency of lock-on state is investigated. When lock-on occurs, the vortex shedding frequency is found to be half the oscillation frequency as expected from previous experiments. The physical flow phenomena of natural shedding and lock-on states are analyzed with physical parameters of recirculation and vortex formation region. Consequently, it is found that the change of wake bubble plays an important role in the flow at the lock-on state. Vortex formation region is also actively changed like recirculation region as the lock-on occurs. Therefore, it is deduced that the recirculation region is closely related with the vortex formation region.

  • PDF