• 제목/요약/키워드: Bubble Interface

검색결과 92건 처리시간 0.026초

마이크로 DMFC 에서 $CO_2$ degassing 과정의 직접 수치 해석 (Direct Numerical Analysis of $CO_2$ degassing process in ${\mu}DMFC$)

  • 신승원;심정익;위완석;조성원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2648-2653
    • /
    • 2007
  • Recently, increasing demand on not only lighter but also extremely mobile battery make micro fuel cell device very attractive alternative. By reducing the size of fuel cell, surface tension becomes dominant factor with minor gravitational effect. Therefore, it is very difficult to detach the $CO_2$ bubble generating on a cathode side in ${\mu}DMFC$ (micro direct methanol fuel cell). The degassing of a $CO_2$ bubble has drawn quite attention especially for ${\mu}DMFC$ due to its considerable effect on overall machine performance. Our attention has been paid to the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We use Level Contour Reconstruction Method (LCRM) which is simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

  • PDF

레이저-GMA 하이브리드 용접에서 유동에 의한 기포 및 기공 형성 해석 (Numerical Simulation of Bubble and Pore Generations by Molten Metal Flow in Laser-GMA Hybrid Welding)

  • 조원익;조정호;조민현;이종봉;나석주
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.67-73
    • /
    • 2008
  • Three-dimensional transient simulation of laser-GMA hybrid welding involving multiple physical phenomena is conducted neglecting the interaction effect of laser and arc heat sources. To reproduce the bubble and pore formations in welding process, a new bubble model is suggested and added to the established laser and arc welding models comprehending VOF, Gaussian laser and arc heat source, recoil pressure, arc pressure, electromagnetic force, surface tension, multiple reflection and Fresnel reflection models. Based on the models mentioned above, simulations of laser-GMA hybrid butt welding are carried out and besides the molten pool flow, top and back bead formations could be observed. In addition, the laser induced keyhole formation and bubble generation duo to keyhole collapse are investigated. The bubbles are ejected from the molten pool through its top and bottom regions. However, some of those are entrapped by solid-liquid interface and remained as pores. Those bubbles and pores are intensively generated when the absorption of laser power is largely reduced and consequently the full penetration changes to the partial penetration.

공학적 관점에서의 다상유동 문제의 수치해석 (Simulation of industrial multiphase flows)

  • Han aehoon;Alajbegovic Ales;Seo Hyeoncheol;Blahowsky Peter
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.389-392
    • /
    • 2002
  • In many industrial applications, multiphase flow analysis is the norm rather than an exception as compared to more-conventional single-phase investigation. This paper describes the implementation of the multiphase flow simulation capability in the general purpose CFD software AVL FIRE/SWIFT. The governing equations are discretized based on a finite volume method (FVM) suitable fur very complex geometry, The pressure field is obtained using the SIMPLE algorithm. Depending on the characteristics of the multiphase flow to be examined, the user can choose either the two-fluid model or an explicit interface-tracking model based on the Volume-of-Fluid approach. For truly 'multi'-phase flow problems, it is also possible to apply a hybrid model where certain phases are explicitly tracked while the other phases are handled by the two fluid model. In order to demonstrate the capability of the method, applications to the Taylor bubble flow simulations are presented.

  • PDF

Lattice-Boltzmann Method를 이용한 2차원 기체-액체간 거동 기초 연구 (Feasibility Study on the Gas-Liquid Multiphase by Lattice-Boltzmann Method in Two-Dimensions)

  • 정노택
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제19권2호
    • /
    • pp.111-119
    • /
    • 2016
  • 기체-액체 이상유동의 거동 시뮬레이션을 위해 Lattice Boltzmann방법(LBM)을 이용하였다. 기체-액체사이의 경계면에서 상호포텐셜 모델인 Shen-Chan방식과 Carnahan-Starling 상태방정식을 도입하였다. 또한 외력항의 처리는 Exact Difference Method를 사용하였다. 개발된 코드를 통하여 상태방정식 특성파악, 기체-액체의 상분리, 표면장력 및 기체 액체 경계면 거동 특성, Homogeneous와 Heterogeneous 캐비테이션, 기포 붕괴등의 시뮬레이션을 수행하였다.

Simulation on mass transfer at immiscible liquid interface entrained by single bubble using particle method

  • Dong, Chunhui;Guo, Kailun;Cai, Qinghang;Chen, Ronghua;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1172-1179
    • /
    • 2020
  • As a Lagrangian particle method, Moving Particle Semi-implicit (MPS) method has great capability to capture interface/surface. In recent years, the multiphase flow simulation using MPS method has become one of the important directions of its developments. In this study, some key methods for multiphase flow have been introduced. The interface tension model in multiphase flow is modified to maintain the smooth of the interface and suitable for the three-phase flow. The mass transfer at immiscible liquid interface entrained by single bubble which could occur in Molten Core-Concrete Interaction (MCCI) has been investigated using this particle method. With the increase of bubble size, the height of entrainment column also increases, but the time of film rupture is slightly different. With the increase of density ratio between the two liquids, the height of entrained column decreases significantly due to the decreasing buoyancy of the denser liquid in the lighter liquid. In addition, the larger the interface tension coefficient is, the more rapidly the entrained denser liquid falls. This study validates that the MPS method has shown great performance for multiphase flow simulation. Besides, the influence of physical parameters on the mass transfer at immiscible interface has also been investigated in this study.

수중의 구형 탄성 몰수체를 둘러싼 기포층에 의한 삽입손실 (Insertion loss by bubble layer surrounding a spherical elastic shell submerged in water)

  • 이근화;이철원;박철수
    • 한국음향학회지
    • /
    • 제41권2호
    • /
    • pp.174-183
    • /
    • 2022
  • 본 논문에서는 내부 유체를 갖는 수중에 몰수된 탄성 쉘이 기포층으로 둘러싸여 있을 때의 음향 방사를 모드 이론을 이용해 연구했다. 전 방향성의 점음원이 내부 유체의 중심에 위치해 있고 음향 소음원으로서 사용되었다. 모드 해의 미지수는 매질 사이의 경계조건으로부터 계산된다. 넓은 주파수 대역에서 모드 해의 안정성을 유지하기 위해, 모드 해의 규격 기법이 사용되었다. 기포 층은 Commander와 Prosperetti의 유효 매질 이론에 기반하여, 단일 모드 분포, 균일 분포, 정규 분포, 멱함수 분포를 이용해 각각 모의되었다. 각각의 기포 분포에 대해 삽입손실이 주파수에 대해 계산되었다. 추가적으로 공극비, 탄성 쉘의 매질 특성, 탄성 쉘과 기포층의 간극의 영향에 대한 수치해석을 수행했다.

도재용(陶材用) 비귀금속(非貴金屬) 합금(合金)의 재사용(再使用)에 따른 결합강도(結合强度)의 실험적(實驗的) 측정(測定) (An Experimental Evaluation on Bond Strength between Porcelain and Recast Allog)

  • 소명섭
    • 대한치과기공학회지
    • /
    • 제11권1호
    • /
    • pp.103-109
    • /
    • 1989
  • Bond strength between alloy and ceramic plays an important role in deciding the quaring the processing of metalceramic restorations. Now the author had an experiment on the measurement of bond strength differences accoding to the contents of recast alloy used during the processing of metal-ceramic restorations. In the experiment, Anusavice's Planar Interface Shear Bond Test was employed to determine the bond strength. Total 25 specimens were divided as 5 groups, that is, 5 specimens in a group respections : Group I (new alloy 100%) Group II (new 75%$\cdot$recast 25%), Group III (new 50%$\cdot$recast 50%), Group IV (new 25%$\cdot$recast 75%), Group V(recast 100%). All specimens examined micropically and respective strength values of the group specimens were checked simultaneously. The results were as follows, 1. In the analtsis of variance the result showed the significant differences of 1%(P<0.01) among the each group classifid according to the recast contents. 2. When the interfaces of specimens were examined with an electron microscope, the air bubble were evenly occurred in all the specimens, and the occurrence frequencies and the sizes of air bubble were different between Group I and Group III, especially marked different Group I and Croup V. 3. In respective verification of each group through T-test, between Group I and Group II, between Group I and Group III did not show significant differences. 4. There was significant difference between Group I and Group IV, between Group I and Group V as 1%(P<0.01). 5. In the Shear Bond Test of all the groups, Croup V showed the lowest value. Explanatoion of Figures Fig 1. Main fracture type of metal-porcelain interlace showed in group I, II, III from shear Bond Test resets. Fig 2. Main fracture type of metal-porcelain interface showed In group Ⅳ, Ⅴ form shear Bond Test resets. Air bubble and their size appeared around interface of metal-porcelain. Fig 3. Group I, Fig 4. Group II Fig 5. Group III, Fig 6. Group IV, Fig 7. Group V.

  • PDF

Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

  • Murallidharan, Janani;Giustini, Giovanni;Sato, Yohei;Niceno, Bojan;Badalassi, Vittorio;Walker, Simon P.
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.859-869
    • /
    • 2016
  • Component-scale modeling of boiling is predominantly based on the Eulerian-Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

ANALYTICAL AND NUMERICAL STUDY OF MODE INTERACTIONS IN SHOCK-INDUCED INTERFACIAL INSTABILITY

  • Sohn, Sung-Ik
    • 대한수학회논문집
    • /
    • 제15권1호
    • /
    • pp.155-172
    • /
    • 2000
  • Mode interactions at Unstable fluid interfaces induced by a shock wave (Richtmyer-Meshkov Instability) are studied both analytically and numerically. The analytical approach is based on a potential flow model with source singularities in incompressible fluids of infinite density ratio. The potential flow model shows that a single bubble has a decaying growth rates at late time and an asymptotic constant radius. Bubble interactions, bubbles of different radii propagates with different velocities and the leading bubbles grow in size at the expense of their neighboring bubbles, are predicted by the potential flow model. This phenomenon is validated by full numerical simulations of the Richtmyer-Meshkov instability in compressible fluids for initial multi-frequency perturbations on the unstable interface.

  • PDF

이중버블시트를 적용한 매트 기초콘크리트의 부위별 온도이력 특성 (Characteristics of Temperature History at Each Section of Mat Foundation Concrete Applying Double Bubble Sheets)

  • 김태청;김종;전충근;신동안;오선교
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.13-14
    • /
    • 2016
  • This study is aimed to analyze temperature history at each section of mat foundation concrete applying double bubble sheets. The results of the study are as follows. Firstly, the results of measuring the temperature history indicate that the lowest external temperature has been recorded at -5.6℃ for the three-day measurement period. For the central section, the result indicates that the lower, center and upper part have all secured the concrete curing temperature of 18℃ or higher. This results are believed to have resulted from excellent heat insulation performance of double bubble sheets. For the edge section between the edge form and the concrete interface, the temperature has been measured, on average, approximately 12℃ lower than the central section. However, all measured sections have indicated the temperature of 5℃ or higher. Meanwhile, an analysis has been conducted through the estimation equation of compressive strength of maturity during the curing period in order to examine the possibility of early frost damage and the aspect of securing strength. It has been confirmed that the compressive strength is higher than 50°D·D, namely, 5MPa, on the 3rd day of the aging process, which allows early frost damage to be avoided.

  • PDF