• Title/Summary/Keyword: Bubble Fluid

Search Result 209, Processing Time 0.025 seconds

Effects of an Electric Field on the Dynamic Characteristics of Bubbles in Nucleate Boiling (핵비등에서 기포의 동특성에 대한 전기장의 효과)

  • 권영철;장근선;권정태;김무환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.963-971
    • /
    • 2000
  • In order to investigate the effects of an electric field on EHD(Electro-hydrodynamic) nucleate boiling hat transfer characteristics in a nonuniform electric field under saturated pool boiling, the basic study has been performed experimentally. In the present study, the working fluid is R-113 and the plate-wire electrode system is used to generate a steep electric field gradient. Boiling parameters are investigated by using a high speed camera. The electric field distribution around a wire is obtained to understand the effect of an electric field on bubble departure/movement. The experimental results show EHD effects are much more considerable when the applied voltage increases. Bubbles depart away from the heated wire in radial direction. It is confirmed that the mechanisms of EHD nucleate boiling are closely connected with the dynamic behavior of bubbles. The boiling parameters are significantly changed by the electric field strength. With increasing applied voltages, the bubble size decreases and the nucleation site density, bubble velocity and bubble frequency increase.

  • PDF

Numerical Simulation of Multiphase Flows with Material Interface due to Density Difference by Interface Capturing Method (경계면 포착법에 의한 밀도차이에 따른 물질경계면을 갖는 다상유동 수치해석)

  • Myon, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.443-453
    • /
    • 2009
  • The Rayleigh-Taylor instability, the bubble rising in both partially and fully filled containers and the droplet splash are simulated by an in-house solution code(PowerCFD), which are typical benchmark problems among multiphase flows with material interface due to density difference. The present method(code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The present results are compared with other numerical solutions found in the literature. It is found that the present method simulates efficiently and accurately complex free surface flows such as multiphase flows with material interface due to both density difference and instability.

Study on the Development of Nozzle-Type Diffusers for Submersible Aeration Process (수중폭기용 노즐형 산기관 개발에 관한 연구)

  • Rhim, Dong-Ryul;Lee, Sangkyoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.5 s.32
    • /
    • pp.7-12
    • /
    • 2005
  • Experimental study was conducted to increase the oxygen transfer efficiency of air diffusers in clean water. By measuring the bubble size from the bubbly two-phase flow visualization with several air diffusers, the size of air bubbles near the top surface of aeration tank seems to be independent on the diffuser types. Considering design parameters for the better break-up of larger bubbles around the air diffusers, advanced conceptual air diffusers using nozzle-type throat showing the higher oxygen transfer efficiencies were made.

NUMERICAL STUDY ON TWO-DIMENSIONAL MULTIPHASE FLOWS DUE TO DENSITY DIFFERENCE WITH INTERFACE CAPTURING METHOD (경계면 포착법을 사용한 밀도차에 따른 다상유동에 관한 수치해석적 연구)

  • Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.214-219
    • /
    • 2007
  • Both the bubble rising in a fully filled container and the droplet splash are simulated by a solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method (CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The present results are compared with other numerical solutions found in the literature. It is found that the present code simulate complex free surface flows such as multi phase flows due to large density difference efficiently and accurately.

  • PDF

Direct Numerical Simulation of the Nucleate Pool Boiling Using the Multiphase Lattice Boltzmann Method : Preliminary Study (다상 격자 볼츠만 방법을 이용한 수조 핵비등 직접 수치 모사: 예비 연구)

  • Ryu, Seung-Yeob;Ko, Sung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.45-53
    • /
    • 2011
  • Multiphase lattice Boltzmann method (LBM) has been used to simulate the nucleate pool boiling directly. For the phase change model, the thermal model and the Stefan boundary condition were introduced to the isothermal LBM. The phase change model was validated by the bubble growth in a superheated liquid under no gravity. The bubble growth on and departure from a superheated wall has been simulated successfully. The preliminary results showed that the detail process of nucleate pool boiling was in good agreement with the experimental results.

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

Oxygen Transfer and Hydraulic Characteristics in Bubble Column Bioreactor Applied Fine Bubble Air Diffusing System (미세기포 산기장치를 적용한 타워형 생물반응기의 산소전달 및 수력학적 특성)

  • Lee, Seung-Jin;Ko, Kyeong-Han;Ko, Myeong-Han;Yang, Jae-Kyeong;Kim, Yong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.772-779
    • /
    • 2012
  • For improving performance of conical air diffuser generating fine bubble, both experimental and numerical simulation method were used. After adapting diffusers inner real scale bubble column, suitable for various diffuser submergence, the effect of diffuser submergence on oxygen transfer performance such as Oxygen Transfer Coefficient ($K_{L}a_{20}$) and Standard Oxygen Transfer Efficiency (SOTE) was investigated empirically. As flow patterns for various diffuser number and submergence were revealed throughout hydrodynamic simulation for 2-phase fluid flow of air-water, the cause of the change for oxygen transfer performance was cleared up. As results of experimental performance, $K_{L}a_{20}$ was increased slightly by 7% and SOTE was increased drastically by 39~72%, 5.6% per meter. As results of numerical analysis, air volume fraction, air and water velocity in bioreactor were increased with analogous flow tendency by increasing diffuser number. As diffuser submergence increased, air volume fraction, air and water velocity were decreased slightly. Because circulative co-flow is determinant factor for bubble diffusion and rising velocity, excessive circulation intensity can result to worsen oxygen transfer by shortening bubble retention time and amount.

ANALYTICAL AND NUMERICAL STUDY OF MODE INTERACTIONS IN SHOCK-INDUCED INTERFACIAL INSTABILITY

  • Sohn, Sung-Ik
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.155-172
    • /
    • 2000
  • Mode interactions at Unstable fluid interfaces induced by a shock wave (Richtmyer-Meshkov Instability) are studied both analytically and numerically. The analytical approach is based on a potential flow model with source singularities in incompressible fluids of infinite density ratio. The potential flow model shows that a single bubble has a decaying growth rates at late time and an asymptotic constant radius. Bubble interactions, bubbles of different radii propagates with different velocities and the leading bubbles grow in size at the expense of their neighboring bubbles, are predicted by the potential flow model. This phenomenon is validated by full numerical simulations of the Richtmyer-Meshkov instability in compressible fluids for initial multi-frequency perturbations on the unstable interface.

  • PDF

Axial and Radial Gas Holdup in Bubble Column Reactor

  • Wagh, Sameer M.;Ansari, Mohashin E. Alam;Kene, Pragati T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1703-1705
    • /
    • 2014
  • Bubble column reactors are considered the reactor of choice for numerous applications including oxidation, hydrogenation, waste water treatment, and Fischer-Tropsch (FT) synthesis. They are widely used in a variety of industrial applications for carrying out gas-liquid and gas-liquid-solid reactions. In this paper, the computational fluid dynamics (CFD) model is used for predicting the gas holdup and its distribution along radial and axial direction are presented. Gas holdup increases linearly with increase in gas velocity. Gas bubbles tends to concentrate more towards the center of the column and follows a wavy path.

Measurement and Modeling of Bubble Points for Binary Mixtures of Carbon Dioxide and N,N-Dimethylformamide (이산화탄소와 디메틸포름아마이드 혼합물의 기포점 측정 및 모델링)

  • Jung, Joon-Young;Lee, Byung-Chul
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • The bubble point pressures of binary mixtures of carbon dioxide ($CO_2$) and N,N-dimethylformamide (DMF) were measured by using a high-pressure experimental apparatus equipped with a variable-volume view cell, at various $CO_2$ compositions in the range of temperatures above the critical temperature of $CO_2$ and below the critical temperature of DMF. The experimental bubble point pressure data were correlated with the Peng-Robinson equation of state (PR-EOS) to estimate the corresponding dew point compositions at equilibrium with the bubble point compositions. The experimentally measured bubble point pressures gave good agreement with those calculated by the PR-EOS. The variable-volume view cell equipment was verified to be an easy and quick way to measure the bubble point pressures of high-pressure compressible fluid mixtures.