• Title/Summary/Keyword: Brushless dc motor

Search Result 552, Processing Time 0.025 seconds

A Commutation Torque Minimization Method for Brushless DC Motors with Trapezoidal Elecromotive Force

  • Kim, Chang-Gyun;Lee, Joong-Hui;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.476-481
    • /
    • 1998
  • In this paper, a commutation torque minimization method using parameter observer for a brushless DC motor fed by a voltage source inverter is described. In order to investigate the nature of the commutation torque ripple in trapezoidal brushless DC motor, a new model of the motor is proposed. The optimal drive voltage to minimize the ripple torque is represented as a function of the motor parameters. Therefore, the important parameter is estimated by least-square algorithm.

  • PDF

Development of a Brushless Linear DC Motor for High Speed and Precise Position Control (고속 정밀용 브러시 없는 리니어 직류 모터 개발)

  • 이강원;조영준;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.73-80
    • /
    • 1998
  • Recently, we have developed a linear brushless DC motor(LBLDCM) with high speed and precise position control performance to apply it to the semiconductor assembly and inspection machinery. It is composed of double side alignment by two armature-stator pairs and each pair is consist of a moving armature with 8 poles by 3 phase coils and a stator with rare earth permanent magnet (Nd-Fe-B) arrays. Through the thrust force analysis on a simplified and whole model of the suggested LBLDCM by an Electromagnetic FEM solver, skew angle of magnet arrays to reduce the thrust force ripple and the winding conditions of the armature is designed. From experimental results, the user's requirements was satisfied and we confirmed distinctly that the repeatable accuracy less than a micron of the linear motion can be obtained at high speed by the developed LBLDCM. This is owing to directly drive the work without the gear train.

  • PDF

A Novel Cogging Torque Reduction Method for Single-Phase Brushless DC Motor

  • Park, Young-Un;Cho, Ju-Hee;Rhyu, Se-Hyun;Kim, Dae-Kyong
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.117-124
    • /
    • 2013
  • Single-phase, brushless DC (BLDC) motors have unequal air-gaps to eliminate the dead-point where the developed torque is zero. Unfortunately, these unequal air-gaps can deteriorate the motor characteristics in the cogging torque. This paper proposes a novel design for a single-phase BLDC motor with an asymmetric notch to solve this problem. In the design method, the asymmetric notches were placed on the stator pole face, which affects the change in permanent magnet shape or the residual flux density of the permanent magnet. Parametric analysis was performed to determine the optimal size and position of the asymmetric notch to reduce the cogging torque. Finite element analysis (FEA) was used to calculate the cogging torque. A more than 28% lower cogging torque compared to the initial model with no notch was achieved.

Performance Improvement of BLDC Motor Speed Control Using Hybrid PWM Method (하이브리드 PWM 방식을 이용한 브러시리스 직류 전동기의 속도 제어 성능 향상)

  • 이동훈;오태석;전성구;김일환;남부희
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.491-500
    • /
    • 2004
  • This paper considers a hybrid PWM(pulse width modulation) method which can be used in the brushless DC motor controller. Due to many disadvantages of bipolar PWM method, unipolar PWM method is mostly used in industrial field. In constant speed control application, the unipolar PWM method shows the good performance of speed control. But in the wide range of speed control application, it shows poor performance especially when deceleration is needed. So we propose the hybrid PWM method that utilizes both of bipolar and unipolar PWM methods according to the sign of the speed controller output. Simulation and experimental result show that the proposed method improves speed control performance of the brushless DC motor which is applied to the industrial sewing machines.

Torque Ripple Minimization in Direct Torque Control of Brushless DC Motor

  • Li, Zhenguo;Zhang, Songfa;Zhou, Shenghai;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1569-1576
    • /
    • 2014
  • This paper mainly proposes a direct torque control strategy to minimize torque ripple in brushless DC (BLDC) motor. BLDC motor has large current and torque ripple when one voltage vector applied in one cycle due to its low inductance. Hence, this paper proposed a hysteresis torque control with PWM mode to control the resultant torque. Moreover, when the direct torque control system is operating during the two-phase half-bridge $120^{\circ}$ conduction mode, large torque ripple in commutation area appears every 120 electrical degree. Based on analyzing the root of torque ripple in detail, lookup tables of switching devices states for new half-bridge modulation mode in the positive and negative reference torque put forwarded. Finally, simulations by MATLAB software and experiment results from DSP are presented to verify the feasibility and effectiveness of the proposed strategy operating in four-quadrant operation.

Torque Ripple Reduction of BLDG Motors Using Single DC-Link Currant Sensor (DC Link단 단일 전류센서에 의한 브러시리스 직류 전동기의 토크 리플 저감)

  • Baek, Dae-Jin;Won, Chang-Hee;Lee, Kyo-Beum;Choy, Ick;Song, Joong-Ho;Yoo, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.974-976
    • /
    • 2001
  • This paper presents a method to reduce commutation torque ripples occurred during commutation in brushless do motor drives using a single DC-link current sensor. In brushless dc motor drives with a single dc current sensor instead of 3-phase line current sensors, it is noted that dc-link current sensor cannot give any information corresponding to the motor currents during line current commutation intervals. A new technique to resolve such a problem is dealt with based on a deadbeat current control in which motor armature voltage command is computed from a dc-link current reference, an actual current and counter emf voltage. The simulation results show that the proposed method reduces the torque ripple significantly.

  • PDF

Characteristics of a Radial Flux Type Slotless Brushless DC Motor for No Cogging Torque

  • Hong, Sun-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.1
    • /
    • pp.20-23
    • /
    • 2004
  • BLDCMs are widely used in many industries. In certain specialized areas, they need to have high efficiency, high power rate and produce a low volume of noise, etc. In this study, a new type of slotless BLDCM is proposed that has no cogging torque, low iron loss and low volume as compared to commonly used BLDCMs. With a high performance magnet and coreless compact winding structure similar to those employed in linear synchronous motors, motor volume is reduced. The proposed motor has been put been through various experiments arid has demonstrated acceptable results for industry applications.

The Digital PI Control for Driving Constant Speed of Brushless DC Motor (브러시리스 직류전동기의 정속도 운전을 위한 디지털 PI제어)

  • Yoon, Shin-Yong;Kim, Hyun-Soo;Kim, Yong;Kim, Il-Nam;Baek, Soo-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.395-402
    • /
    • 2000
  • This paper presents the improvement for speed characteristics of a Brushless DC Motor (BLDCM), it was applied to digital PI control for this. The practical PID control has been widely used to velocity control of DC motors. In this paper, a digital PI controller is used in order to decrease the speed error in constant velocity control of BLDCM. A TMS320C31 DSP is used for the microprocessor of digital PI control. The method using the DSP carry out the real-time control. The DSP has the rapid calculation ability and sampling time used lms. Driving BLDCM used 50W, motor input DC 150V and rotation speed 3000rpm. When BLDCM is to approval for discretion velocity at the acceleration and deceleration driving with any load, it was a feasible for stabilization control. Therefore, the experimental results indicate the superiority and validity of the velocity control by digital PI control.

  • PDF

The Analysis of Dynamic characteristics and Modeling of Brushless DC Motor (Brushless DC 전동기의 모델링과 동특성 해석)

  • 전내석;조성훈;안병원;이성근;김윤식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.408-413
    • /
    • 2001
  • DC motor has widely been used in the field of variable-speed driving unit since it is easy to control flux and torque precisely but it is troublesome to check and maintain periodically. In addition, there are difficulties in hish power and high speed running due to rectifying limit of commutator, and are a lot of restrictions in installation. Therefore, speed control in BLDC(Brushless DC) motor has seriously been studied for a long while. In this paper, a mathematical model of BLDC motor driven by PWM inverter is developed. Dynamics and steady-state characteristics of BLDC motor are simulated and analyzed with a series of experiment for the parameter estimation : torque, speed, phase voltage and current.

  • PDF

A Simplified Analysis Approach on the Rotor Position Detection Error in Sensorless Interior Permanent Magnet Brushless DC Motor Drives (센서리스 매입형 영구자석 브러시리스 직류전동기 구동장치에서 단순화된 회전자 위치검출 오차 분석 방법)

  • Lee, Kwang-Woon;Park, Tae-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.449-452
    • /
    • 2016
  • This paper presents a simplified analysis on the rotor position detection error in sensorless interior permanent magnet brushless DC motor (BLDCM) drives, wherein terminal voltage sensing based on the back-electromotive force (back-EMF) zero-crossing point detecting circuitry is employed. The effect of a rotor saliency on the back-EMF's zero-crossing point detection is analyzed using the extended EMF-based voltage equation of the interior permanent BLDCM in a stationary reference frame, and thus the overall analysis is considerably simplified compared to the conventional one. Simulation results are provided to verify the effectiveness of the proposed method.