• Title/Summary/Keyword: Brushless DC servo motor

Search Result 41, Processing Time 0.029 seconds

A study on the Digital Control System for high speed operation of BLDC Motor (BLDC 전동기의 고속운전을 위한 디지털제어기에 관한연구)

  • Cheon, D.J.;Shin, M.S.;Lee, S.H.;Jung, D.Y.;Kim, C.S.;Lee, B.S.;Goak, D.G.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.336-339
    • /
    • 2005
  • This paper presents a PM type BLDC(Brushless DC) Motor servo drive system using high performance DSP TMS320F2812. The DSP controller with 150MIPS enables an enhanced real time implementation and increased efficiency and high performance for motor drive. The suggested drive system consists of PI action for the constant speed control and PID action for the current control with only 3 Halls, no encoders. The developed servo drive control system shows a good response speed characteristics at high speed up to 10000 [rpm].

  • PDF

A Study on the High Speed of Cutting Tool Feed System for the Noncircular Machining (비진원 가공용 공구 이송장치의 고속화 성능에 관한 연구)

  • 김성식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.96-103
    • /
    • 1998
  • With the advance of processing technology , so as to spare fuel, piston heads used in automobile reciprocating engine have complex 3-dimension, with respect to shape such as ovality, profile, eccentricity, offset, recess. Therefore, coming out of the existing process work used master cam. the process work is performed using a CNC lathe. For a precision processing, the processing work is need to make study of high speed feed gear synchronized with the rotative speed of main spindle. And then the high speed feeding system must maintain high dynamic stiffness, high speed and high positioning accuracy . In this paper, in order to achieve high speed cutting tool feeding. The linear brushless DC motor is used for satisfying this process work. The ball bush and turicite is used as the guidance of the feed gear system. Also linear encoders, digital servo amplifiers and controller are used for controlling driving motor. This paper presents the design and simulation of the new tool feed system for noncircular machining.

  • PDF

Controller Design of BLDC Motor Fin Position Servo System by Employing H-infinity Loop Shaping Method (H-infinity Loop Shaping 방법을 이용한 BLDC 전동기 핀 위치제어시스템 제어기 설계)

  • Zhu, He-Lin;Mok, Hyung-Soo;Lee, Hyeong-Geun;Han, Soo-Hee;Seo, Hyeon-Uk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2019
  • This study proposes a robust control of a fin position servo system using the H-infinity loop-shaping method. The fin position control system has a proportional (P) position controller and a proportional-integral (PI) controller. In this work, the position control loop requires a wide bandwidth. No current control loop exists due to the compact design of the system. Hence, the controller parameters are difficult to determine using the traditional cascade design method. The $H_{\infty}$ controller design method is used to design the controller's gain to achieve good performance and robustness. First, the transfer function of the system, which can be divided into tunable and fixed parts, is derived. The tunable part includes the position P controller and speed PI controller. The fixed part includes the rest of the system. Second, the optimized controller parameters are calculated using Matlab $H_{\infty}$ controller design program. Finally, the system with optimized controller is tested by simulation and experiment. The control performance is satisfactory, and the $H_{\infty}$ controller design method is proven to be valid.

The Design of an Auto Tuning PI Controller using a Parameter Estimation Method for the Linear BLDC Motor (선형 추진 BLDC 모터에 대한 파라미터 추정 기법을 이용하는 오토 튜닝(Auto Tuning) PI 제어기 설계)

  • Cha Young-Bum;Song Do-Ho;Koo Bon-Min;Park Moo-Yurl;Kim Jin-Ae;Choi Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.659-666
    • /
    • 2006
  • Servo-motors are used as key components of automated system by performing precise motion control as accurate positioning and accurate speed regulation in response to the commands from computers and sensors. Especially, the linear brushless servo-motors have numerous advantages over the rotary servo motors which have connection with the friction induced transfer mechanism such as ball screws, timing belts, rack/pinion. This paper proposes an estimation method of unknown motor system parameters using the informations from the sinusoidal driving type linear brushless DC motor dynamics and outputs. The estimated parameters can be used to tune the controller gain and a disturbance observer. In order to meet this purpose high performance Digital Signal Processor, TMS320F240, designed originally for implementation of a Field Oriented Control(FOC) technology is adopted as a controller of the liner BLDC servo motor. Having A/D converters, PWM generators, rich I/O port internally, this servo motor application specific DSP play an important role in servo motor controller. This linear BLDC servo motor system also contains IPM(Intelligent Power Module) driver and hail sensor type current sensor module, photocoupler module for isolation of gate signals and fault signals.

Intelligent Position Control of a Vertical Rotating Single Arm Robot Using BLDC Servo Drive

  • Manikandan, R.;Arulmozhiyal, R.
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.205-216
    • /
    • 2016
  • The manufacturing sector resorts to automation to increase production and homogeneity of products during mass production, without increasing scarce, expensive, and unreliable manpower. Automation in the form of multiple robotic arms that handle materials in all directions in different stages of the process is proven to be the best way to increase production. This paper thoroughly investigates robotic single-arm movements, that is, 360° vertical rotation, with the help of a brushless DC motor, controlled by a fuzzy proportional-integral-derivative (PID) controller. This paper also deals with the design and performance of the fuzzy-based PID controller used to control vertical movement against the limited scope of conventional PID feedback controller and how the torque of the arm is affected by the fuzzy PID controller in the four quadrants to ensure constant speed and accident-free operation despite the influence of gravitational force. The design was simulated through MATLAB/SIMULINK and integrated with dSPACE DS1104-based hardware to verify the dynamic behaviors of the arm.

Development of a Microcontroller-based Brushless DC Motor Control System for an Total aAtificial Heart

  • Choi, Won-Woo;Park, Seong-Keun;Choi, Jae-Soon;Min, Byoung-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.509-513
    • /
    • 1995
  • A microcontroller-based DC motor control system for a total artificial heart(TAH) was developed. Using a one-chip microcontroller, 87Cl96KB, the design of digital motor speed control system and servo control system is demonstrated. Functionally, the control system consists of a position control unit, a speed control unit, and a communication unit. The performance and the reliability of the developed control system were assessed through a series of mock circulation system experiments.

  • PDF

DEVELOPMENT OF AC SERVO MOTOR CONTROLLER FOR INDUSTRIAL ROBOT AND CNC MACHINE SYSTEM (산업용 ROBOT와 공작기계를 위한 AC SERVO MOTOR 제어기 개발)

  • Lim, Sang-Gwon;Lee, Jin-Won;Moon, Yong-Ky;Jeon, Dong-Lyeol;Jin, Sang-Hyun;Oh, In-Hwan;Kim, Dong-Il;Kim, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1211-1214
    • /
    • 1992
  • AC servo motor drives, Fara DS series, proposed in this paper can be effectively used in robots, CNC machine tools, and FA system with AC servo motors as actuators. The inverter of the AC servo drive consists of IGBT (Insulated Gate Bipolar Transistor) which have high switching frequency. Noises and vibrations generated in variable speed control of AC servo motors can be greatly reduced due to their high switching frequencies. In the developed servo drive, maximum torque is always generated in the whole speed range by compensating phase shift, which results from the nonlinearies of the AC servo motor during abrupt acceleration and deceleration. Abundant protection functions are provided to prevent abnormal state of the servo motor, and furthermore diverse user options are considered provided for the effective application. The proposed AC servo motor drive is designed to minimize velocity variation with respect to external load, supply voltage, environmental temperature, and humidity, so can be widely used in the fields of factory automation including robots and CNC msachine tools.

  • PDF

The Modified Two-axis Vector Controller of Linear Induction Motor to Apply to the Non-contact Stage with Large Workspace (대면적 비접촉 스테이지에 구동기 적용을 위한 선형유도기의 변형된 2축 벡터 제어기)

  • Jung, Kwang-Suk;Lee, Sang-Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.385-391
    • /
    • 2008
  • To effectively cope with a complexity of kinematic metrology due to workspace enlargement of the planar stage, the linear induction motor is suggested as its new driving source. Especially, the linear induction motor under uniform plate type of secondary doesn't inherently have a periodical force ripple which is generally shown in the brushless DC motor. But, it presents a poor transient characteristic at zero or low speed zone owing to time delay of flux settling, resulting in slow response. To improve the servo property of linear induction motor and apply successfully it to the precision stage, this paper discusses a modified vector control methodology. The controller has a novel input form, fixed d-axis current, q-axis current and forward-fed DC current, to control thrust force and normal force of the linear induction motor independently. Influence of the newly introduced input and the feasibility of controller are validated experimentally.

Current Compensation Scheme to Reduce Torque Ripples of Delta-connected Low-inductance BLDC Motor Drives (델타 결선형 저인덕턴스 BLDC 전동기의 토크 리플 저감을 위한 전류 보상 기법)

  • Park, Do-Hyeon;Lee, Dong-Choon;Lee, Hyong-Gun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.449-456
    • /
    • 2017
  • This study proposes a method for compensating for the commutation torque ripple of delta-connected brushless DC motors with low inductance based on a current predictions. At the commutation instant, a phase current at the next sampling period is predicted and compared with the reference phase current to determine whether torque ripples will occur or not. If the predicted current cannot reach the reference phase current, the reference current is modified and the relevant voltage reference is produced to reduce the torque ripple. The validity of the proposed method has been verified by simulation and experimental results. The commutation torque ripple has been decreased by 17.7% at 1,000 rpm and 80% load conditions.

Robust Control of Brushless DC Motor Using Disturbance Observer (외란 관측자를 이용한 BLDC 모터의 강인 제어)

  • Yu, Byung-Sam;Shin, Doo-Jin;Kim, Kwang-Young;Huh, Uk-Youl;Kim, Jin-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.909-911
    • /
    • 1999
  • This paper proposes a robust control system with the disturbance observer for BLDC servo system. The overall control system is composed of the speed controller which is implemented with PI controller and the disturbance observer with free parameters. The BLDC servo system can improve the closed loop characteristics without affecting the command input response. The characteristics of the closed loop system is improved by suppressing disturbance effectively with the disturbance observer. Measurement noise is also considered by adjusting bandwidth of free parameters. We can overcome the drawbacks of the conventional PI controller. Finally, the performance of the controller is analyzed theoretically and some simulation results are presented to demonstrate the better performance than the conventional PI controllers.

  • PDF