• 제목/요약/키워드: Brownian relaxation

검색결과 5건 처리시간 0.027초

산화철 나노입자의 브라운 운동에 대한 자기장 의존성 연구 (Magnetic Field Dependence of Brownian Motion in Iron-oxide Nanoparticles)

  • 정은경;윤석수;김동영
    • 한국자기학회지
    • /
    • 제26권1호
    • /
    • pp.13-18
    • /
    • 2016
  • 유기 용매에 고르게 분산되어 있는 26 nm 크기의 산화철 나노입자를 사용하여 주파수에 따른 교류 자화율을 측정하였다. 자기장이 없는 조건에서 측정한 나노입자의 자화율은 Debye 완화 모델로 계산한 결과와 일치하였으며, 완화 주파수(relaxation frequency)는 370 Hz였다. 나노입자의 완화 주파수는 용매의 점성에 의한 브라운 운동(Brownian motion)의 완화 시간과 일치하였다. 브라운 운동에 의한 나노입자의 완화 주파수는 자기장의 세기에 따라 선형적으로 증가하는 특성을 보였다.

Substrate-free Biosensing using Brownian Rotation of Bio-conjugated Magnetic Nanoparticles

  • Chung Seok-Hwan;Hoffmann Axel;Chen, Liaohai;Sun, Shouheng;Guslienko Konstantin;Grimsditch Marcos;Bader Samuel D.
    • Journal of Magnetics
    • /
    • 제11권4호
    • /
    • pp.189-194
    • /
    • 2006
  • The recent development of bio-conjugated magnetic nanoparticles offers many opportunities for applications in the field of biomedicine. In particular, the use of magnetic nanoparticles for biosensing has generated widespread research efforts following the progress of various magnetic field sensors. Here we demonstrate substrate-free biosensing approaches based on the Brownian rotation of ferromagnetic nanoparticles suspended in liquids. The signal transduction is through the measurement of the magnetic ac susceptibility as a function of frequency, whose peak position changes due to the modification of the hydrodynamic radius of bio-conjugated magnetic nanoparticles upon binding to target bio-molecules. The advantage of this approach includes its relative simplicity and integrity compared to methods that use substrate-based stray-field detectors.

Debye Screening Effect on Scaling Behavior of Longest Relaxation Time of Biological Polyelectrolyte Chain

  • Lee, Jeong Yong;Sung, Jung Mun;Yoon, Kyu;Chun, Myung-Suk;Jung, Hyun Wook
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3703-3708
    • /
    • 2013
  • The scaling relationship of the longest relaxation time of a single chain of semiflexible biological polyelectrolyte has been investigated by performing well-established coarse-grained Brownian dynamics simulations. Two kinds of longest relaxation times were estimated from time-sequences of chain trajectories, and their behaviors were interpreted by applying the scaling law for different molecular weights of polyelectrolyte and Debye lengths. The scaling exponents for longest stress relaxation and rotational relaxation are found in the ranges of 1.67-1.79 and 1.65-1.81, respectively, depending on the physicochemical interaction of electrostatic Debye screening. The scaling exponent increases with decreasing screening effect, which is a special feature of polyelectrolytes differing from neutral polymers. It revealed that the weak screening allows a polyelectrolyte chain to follow the behavior in good solvent due to the strong electrostatic repulsion between beads.

VDCN계(系) 공중합체(共重合體)의 선형(線刑) 유전특성(誘電特性) (Linear Dielectric Relaxations in Copolymers of Vinylidence Cyanide)

  • 강대하;이덕출
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.186-188
    • /
    • 1988
  • Relaxation spectra of the linear dielectric constants $\varepsilon=\varepsilon'-j{\varepsilon}"$ have been measured as functions of temperature and frequency for alternating copolymers of vinylidene cyanide (VDCN/VAc, VDCN/VPr, VDCN/VBz and VDCN/St) It is found that the linear dielectric constants e show characteristics of the temperature dependence that the real part have a large peak related to the glass transition point(Tg), and of the frequency dependence that the real port increases with decreasing frequency and the imaginary part increases largely in low frequency range. These phenomena mean Debye-type relaxation due to the micro-Brownian moi ions of non-crystalline seqments.

  • PDF

Generation of Maxwell Displacement Current Across Single monolayers due to Phase transition

  • Mitsumasa Iwamoto;Wu, Chen-Xu
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.6.1-10
    • /
    • 1996
  • Starting from the Debye theory of rotational Brownian motion equation, we derive an expression for explaining the generation of Maxwell displacement current (MDC) across single monolayers on a material surface. The orientational order parameter and the dielectric relaxation the of monolayers are derived. Based on fille analyses developed here, we examine the MDC across phospholipid monolayers with thermal stimulation due to the change in the spontaneous polarization, and the generation of MDC from 4-cyano-4\`-5-alkayl-biphenyl(5CB) Langmuir-film at the onset of transition by monolayer compression