• Title/Summary/Keyword: Brown leaf blight

Search Result 76, Processing Time 0.025 seconds

Survey on the Occurrence of Apple Diseases in Korea from 1992 to 2000

  • Lee, Dong-Hyuk;Lee, Soon-Won;Choi, Kyung-Hee;Kim, Dong-A;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.375-380
    • /
    • 2006
  • In the survey from 1992 to 2000, twenty-eight parasitic diseases were observed in major apple producing areas in Korea. The predominant apple diseases were white rot(Botryosphaeria dothidea), Marssonina blotch(Marssonina mali), Valsa canker(Valsa ceratosperma), Alternaria leaf spot(Alternaria mali), and bitter rot(Collectotrichum gloeosporioides and C. acutatum). Apple scab that reappeared in 1990 after disappearance for 15 years was disappeared again since 1997. A viroid disease(caused by apple scar skin viroid) was newly found in this survey. The five diseases, fire blight(Erwinia amylovora), black rot(Botryosphaeria obtusa), scab(Cladosporium carpophilum), Monochaetia twig blight(Monochaetia sp.), and brown leaf spot(Hendersonia mali), which had once described in 1928 but no further reports on their occurrence, were not found in this survey. However, blossom blight(Monilinia mali), brown rot(Monilinia fructigena), and pink rot(Trichothecium roseum), which did not occur on apple after mid 1970s, were found in this survey.

Sooty Leaf Blight of Cymbidium spp. Caused by Pseudocercospora cymbidiicola (Pseudocercospora cymbidiicola에 의한 심비디움 검은잎마름병)

  • Han, Kyung-Sook;Park, Jong-Han;Lee, Jung-Sup;Cheong, Seung-Ryong
    • Research in Plant Disease
    • /
    • v.13 no.2
    • /
    • pp.126-129
    • /
    • 2007
  • Sooty leaf blight disease of Cymbium spp. was observed on orchid fields located at Gyeonggi-do in 2005-2006. Symptoms of the disease appeared on leaves and leaf spots were circular to nearly-circular, these circular blemished were yellow, with greater amounts of brown to black flecks forming as the spots enlarge. Severely infected leaves were dry and defoliated. These symptoms were realized wrongly as symptoms by virus. But Pseudocercospora cymbidiicola were isolated from the diseased plants. Conidiophores were produced on the lesion surface of the leaf with the blemished areas andconidia formed dark brown, cylindrical and straight to slightly curved, 5-9 septate, $23.7-85.0\;{\times}\;2.0-3.4\;{\mu}m$. Mycelial growth was mostly slow on potato dextrose agar and the optimum temperature for growth was $25^{\circ}C$. We were identified as Pseudocercoepora cymbidiicola based on the morphological characteristics.

Studies on Mulberry Shoot Rot caused by Fusarium spp. (Fusarium spp. 균에 의한 뽕나무신소썩음병에 관한 연구)

  • 윤형주;김영택;진경식;박인균;양성열
    • Journal of Sericultural and Entomological Science
    • /
    • v.37 no.1
    • /
    • pp.86-91
    • /
    • 1995
  • Isolation and pathogenicity of Fusarium spp. from mulberry shoot rot and severity of diseases which were known as bacterial blight were examined on four mulberry varieties in Suwon, Kongju and Chuncheon, A symptom of mulberry shoot rot was initiated long brown spot on young leaves and shoots. It was developed into dark brown spot and produced white mycelia and spores on the diseased symptoms. A symptom of bacterial blight showed leaf rolling and water soaking spot and produced bacterial ooze on leaf and shoot However later stage of upper two types of symptom was hardly distinguished. Severities of shoot rot and bacterial blight were 7.5% and 4.4% in Suwon, respectively. Isolation of Fusarium spp. on shoot rot symptoms was highter than that on bacterial blight symptoms, but isolation of Pseudomonas spp. was higher on bacterial blight symptoms. Trends of pathogenicity of Fusarium spp. and Pseudomonas spp. were similar to inoculation works, and isolations of pathogenic Fusarium spp. from center of symptom was higher than that from 30cm of symptom of all samples in three cultivation areas. Disease severities of shoot rot on variety of Kaeryangppong were 13.9%, 15.9% and 17.2% in Suwon, Kongju and Chuncheon, respectively. However variety of Cheongolppong was highly resistant to shoot rot disease in three cultivation areas.

  • PDF

Occurrence of Leptosphaerulina Leaf Blight on Kentucky Bluegrass Caused by Leptosphaerulina trifolii (Leptosphaerulina trifolii에 의한 Kentucky Bluegrass의 Leptosphaerulina 잎마름병 발생)

  • Kim, Jeong-Ho;Shim, Gyu-Yul;Kim, Young-Ho
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.94-96
    • /
    • 2010
  • In May of 2004 through 2007, Leptosphaerulina leaf blight caused by Leptosphaerulina trifolii occurred on Kentucky bluegrass (Poa pratensis) at golf courses in Gangwon Province, Korea. Symptoms on the turfgrass caused by L. trifolii were leaf blights, dying from the leaf tip downwards to the crown, which appeared patches in the field because of local pockets of severely infected (blighted) grass. Perithecia were produced on old or weak leaves, including club-shaped asci, each of which contained 8 pale brown muriform ascospores with cross and longitudinal septa. Ascospores of the fungus isolated from the diseased leaf tissue and cultured on potato-dextrose agar (PDA) were muriform multicellular (composed of 3-6 cells) and $23.4-40.5{\times}7.8-15.6{\mu}m$ in size with 3-4 transverse and 0-3 longitudinal septa, which were morphologically identical to L. trifolii reported previously. DNA sequences of ribosomal RNA gene (internal transcribed spacer) of the fungus were homologous with similarity of 99% to those of L. trifolii isolates in GenBank database, confirming the identity of the causal agent of the disease. Pathogenicity of the fungus was also confirmed on the creeping bentgrass by Koch's postulates. This is first report of Leptosphaerulina leaf blight on turfgrass caused by L. trifolii in Korea.

Tea Leaf Disease Classification Using Artificial Intelligence (AI) Models (인공지능(AI) 모델을 사용한 차나무 잎의 병해 분류)

  • K.P.S. Kumaratenna;Young-Yeol Cho
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • In this study, five artificial intelligence (AI) models: Inception v3, SqueezeNet (local), VGG-16, Painters, and DeepLoc were used to classify tea leaf diseases. Eight image categories were used: healthy, algal leaf spot, anthracnose, bird's eye spot, brown blight, gray blight, red leaf spot, and white spot. Software used in this study was Orange 3 which functions as a Python library for visual programming, that operates through an interface that generates workflows to visually manipulate and analyze the data. The precision of each AI model was recorded to select the ideal AI model. All models were trained using the Adam solver, rectified linear unit activation function, 100 neurons in the hidden layers, 200 maximum number of iterations in the neural network, and 0.0001 regularizations. To extend the functionality of Orange 3, new add-ons can be installed and, this study image analytics add-on was newly added which is required for image analysis. For the training model, the import image, image embedding, neural network, test and score, and confusion matrix widgets were used, whereas the import images, image embedding, predictions, and image viewer widgets were used for the prediction. Precisions of the neural networks of the five AI models (Inception v3, SqueezeNet (local), VGG-16, Painters, and DeepLoc) were 0.807, 0.901, 0.780, 0.800, and 0.771, respectively. Finally, the SqueezeNet (local) model was selected as the optimal AI model for the detection of tea diseases using tea leaf images owing to its high precision and good performance throughout the confusion matrix.

A New Soybean Cultivar "Gaechuck#1" : Black Soybean Cultivar with Lipoxygenase2,3-free, Kunitz Trypsin Inhibitor-free and Green Cotyledon

  • Chung, Jong Il
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.603-606
    • /
    • 2009
  • Lipoxygenase and Kunitz trypsin inhibitor protein of mature soybean [Glycine max (L.) Merr.] seed are main anti-nutritional factors in soybean seed. A new soybean cultivar, "Gaechuck#1" with the traits of black seed coat, green cotyledon, lipoxygenase2,3 and Kunitz trypsin inhibitor protein free was developed. It was selected from the population derived the cross of "Gyeongsang#1" and C242. Plants of "Gaechuck#1" have a determinate growth habit with purple flowers, brown pubescence, black seed coat, black hilum, oval leaflet shape and brown pods at maturity. Seed protein and oil content on dry weight basis have averaged 39.1% and 16.2%, respectively. It has shown resistant reaction to soybean necrosis, soybean mosaic virus, Cercospora leaf spot and blight, black root rot, pod and stem blight, and soybean pod borer. "Gaechuck#1" matured on 5-10 October with a plant height of 50 cm. The 100-seed weight of "Gaechuck#1" was 23.2g. Yield of "Gaechuck#1" was averaged 2.2 ton/ha from 2005 to 2007.

Isolation and Identification of Bipolaris coicis, Causing Leaf Blight of Job's Tears (율무 잎마름병을 일으키는 Bipolaris coicis의 분리 및 동정)

  • Kim, Sung-Kee;Kim, Ki-Woo;Hong, Soon-Sung;Park, Eun-Woo;Yang, Jang-Souck;Kim, Yun-Jeong
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.291-296
    • /
    • 1997
  • Diseased leaves of Job's tears were collected at six locations in Korea to isolate and identify the pathogen causing leaf blight. Conidia were brown, fusoid, and slightly curved. They were $25{\sim}46{\times}10{\sim}15\;{\mu}m$ in size, and had mostly 4 septa which were characteristic of pseudosepta. A few conidia had slightly protruding hila, whereas most had no hilum. Conidial germ tubes were produced mostly from both polar end cells (bipolar), and progressed in semiaxial direction. When seedlings of Job's tears were inoculated with conidia, long, spindle-shaped, and brown lesions were produced on leaves, and entire leaves became blighted 15 days later. Based on the aggressiveness in pathogenicity, the isolates could be divided into two groups. Considering the mycological characteristics and pathogenicity of the fungus, the pathogen causing leaf blight of Job's tears was determined to be Bipolaris coicis (Nisikado) Shoemaker.

  • PDF

Gray Mold on Carrot Caused by Botrytis cinerea in Korea

  • Park, Kyeong-Hun;Ryu, Kyoung-Yul;Yun, Hye-Jeong;Yun, Jeong-Chul;Kim, Byeong-Seok;Jeong, Kyu-Sik;Kwon, Young-Seok;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.364-368
    • /
    • 2011
  • Gray mold caused by Botrytis cinerea was found on a carrot seedling in a greenhouse and a field at Daegwallryeong, Gangwon Province in 2007-2009. Symptoms included irregular, brown, blight, or chlorotic halo on leaves and petioles of the carrots. Fungal conidia were globose to subglobose or ellipsoid, hyaline or pale brown, nonseptate, one celled, $7.2-18.2{\times}4.5-11\;{\mu}m$ ($12.1{\times}8.3\;{\mu}m$) in size, and were formed on botryose heads. B. cinerea colonies were hyaline on PDA, and then turned gray and later changed dark gray or brown when spores appeared. The fungal growth stopped at $35^{\circ}C$, temperature range for proper growth was $15-25^{\circ}C$ on MEA and PDA. Carrots inoculated with $1{\times}10^5$ ml conidial suspension were incubated in a moist chamber at $25{\pm}1^{\circ}C$ for pathogenicity testing. Symptoms included irregular, brown, water-soaked rot on carrot roots and irregular, pale brown or dark brown, water-soaked rot on leaves. Symptoms were similar to the original symptoms under natural conditions. The pathogen was reisolated from diseased leaves, sliced roots, and whole roots after inoculation. As a result, this is the first report of carrot gray mold caused by B. cinerea in Korea.

Sooty Leaf Blight of Dendrobium sp. Caused by Pseudocercospora dendrobii (Pseudocercospora dendrobii에 의한 덴드로비움 검은잎마름병)

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • The Korean Journal of Mycology
    • /
    • v.30 no.2
    • /
    • pp.173-175
    • /
    • 2002
  • Sooty leaf blight was found on Dendrobium sp. in several farmers' fields located in Namji-eup, Changnyeong-gun, Gyeongnam province, Korea in 2001. Symptoms of the disease appeared on leaves. Sooty leaf spots were started with amphigenous, subeircular to irregular spots, with light grayish brown to black color with definite margin lines on the upper surface of leaves. Infected leaves became defoliated and whole plants eventually were died. The infection rates of the disease in the surveyed area reached up to 64.8%, in the early September. Conidiophores of the causal fungus were dark grayish brown in color, densely fasciculate, straight, curved to sinuous, branched, $5{\sim}10$ septate and $63{\sim}164{\times}3.2{\sim}4.9{\mu}m$ in size. Conidia were pale to olivaceous in color, obclavatecylindric, straight to slightly curved in shape, $1{\sim}5$ septate and $46{\sim}98{\times}3.2{\sim}3.9{\mu}m$ in size. The optimum temperature for mycelial growth of the fungus was $25^{\circ}C$. The fungus was identified as Pseudocercospora dendrobii on the basis of its mycological characteristics. This is the first report on sooty leaf light of Dendrobium sp. caused by Pseudocercospora dendrobii in Korea.