• Title/Summary/Keyword: Brown Coal

Search Result 27, Processing Time 0.03 seconds

Combustion and thermal decomposition characteristics of brown coal and biomass

  • Kim, Hee Joon;Kasadani, Yuichi;Li, Liuyun;Shimizu, Tadaaki;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.373-377
    • /
    • 2012
  • Among the fossil fuels, the brown coal is a great deal of resources. However, it is hardly used due to the high moisture content and low calorific value. It has both the week points such as spontaneous combustion and high volatile content and the strong points such as the low-sulfur and low ash content. If we overcome these week points, the using amount of brown coal would be increased. Also, it is well known that biomass is one of the important primary renewable energy sources because of carbon neutral energy. Furthermore, the utilization of biomass has been more and more concerned with the depletion of fossil fuel sources as well as the global warming issues. Combustion and thermal decomposition of biomass is one of the more promising techniques among all alternatives proposed for the production of energy from biomass. In this study, combustion of brown coals and mushroom waste was done. Mass change of samples and emission of hydrocarbon components were measured. As the results, we obtained combustion rate constant. Also activation energy was calculated in char combustion step. Hydrocarbon components were more generated in low oxygen concentration than high. Emission amount of hydrocarbon components in mushroom waste was significantly increased comparing to brown coal.

Ammonia Reduction from Swine Manure Slurry with Additives of Brown Coal and Oak Charcoal (양돈분뇨의 암모니아 저감을 위한 갈탄, 참숯 첨가제의 효능 분석)

  • Hwang, H.S.;Oh, I.H.;Jang, Y.S.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.91-96
    • /
    • 2008
  • The odours from spreading the slurry, manure storage tanks, and the stall are a source of annoyance for the neighbors and sometimes even become a case for civil appeal. Reducing the odourant and ammonia emission is an urgent need to be addressed. It is known that brown coal and oak charcoal have an ability to absorb odour. We designed an experiment set in lab scale and used the brown coal and oak charcoal as additives in the test to reduce odour. The test are divided into two categories; namely aeration and no-aeration. The additives were added to the each sample at a concentration of 5% and 10% of total base solids, besides the control samples. We carried out the Phenate Method for ammonia analyzing. In the non-aerated case, the results showed a reducing efficiency of 23.7% and 26.4% with an addition rate of 5% and 10% of additives, respectively. In the aerated test, the reducing efficiency of ammonia was 17.8% and 21.0% with an addition rate of 5% and 10% of additives, respectively. In case of oak charcoal, non-aeration showed removal efficiencies of ammonia at 15.9% and 16.1% with addition rates of 5% and 10%, respectively, With aeration, they were 11.4% and 26.4% with addition rates of 5% and 10% oak charcoal, respectively. The tests show that brown coal and oak charcoal have a reducing effect on ammonia emissions.

  • PDF

Optical Properties of Soda-lime Color Glass Fabricated by Using Refused Coal Ore (석탄폐석을 이용한 소다라임계 컬러유리의 광학적 특성)

  • Lim, Tae-Young;Jeong, Sang-Su;Hwang, Jong-Hee;Kim, Jin-Ho;Kim, Jung-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.524-534
    • /
    • 2010
  • Glass was fabricated using refused coal ore obtained from the Dogye coal mine in Samcheok. We additionally used soda ash and calcium carbonate to make a glass with the chemical composition of soda-lime glass, and we also used white, brown, and green glass cullet to make various kinds of colored glass. Transparent glass was fabricated by melting batch materials including refused coal ore at $1550^{\circ}C$ for 1 hr in an electrical furnace. The light transmittance and color chromaticity were measured by a UV/VIS/NIR spectrometer. Transparent glass with a light transmittance of over 80% was fabricated using normal refused coal ore and white glass cullet. Various kinds of colored glass with a light transmittance of 30-80% were fabricated using refused coal ore and brown or green glass cullet. The light transmittance of the mixed color glass samples, fabricated using normal refused coal ore and brown glass cullet and green glass cullet, indicated 30-47%, a relatively low value, in the condition of a cullet ratio of 20-50%. The characteristics of the color chromaticity of the glass samples were indicated in a chromaticity diagram by x-coordinates, y-coordinates, Y (lightness). The values of x-coordinates and y-coordinates were moved with a regular directional property according to the kind and amount of glass cullet. Therefore, we concluded that refused coal ore can be used for raw materials of color glass products like art glass and glass tile.

Content and Distribution of Transition Metals and Rare Earth Elements in Magnetically and Mechanically Separated Brown Coal Ash

  • Malikov, Sh.R.;Pikul, V.P.;Mukhamedshina, N.M.;Sandalov, V.N.;Kudiratov, S.;Ibragimova, E.M.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.365-369
    • /
    • 2013
  • Coal ash is known to contain a noticeable amount of valuable elements, including transition metals and lanthanides. Therefore it is quite actual problem to extract them for metallurgy and other applications. This paper presents the results of high gradient magnetic and mechanical separation, microscopy, element analyses and optical spectroscopy of brown coal ash taken from the combustion camera and chimney-stalk of Angren thermal power station. The separated magnetic fraction was 3.4 wt.%, where the content of Fe in ferrospheres increased to 58 wt.%. The highest contents of Fe and rare earth elements were found in the fine fractions of $50-100{\mu}m$. Optical absorption spectroscopy of water solutions of the magnetic fractions revealed $Fe^{2+}$ and $Fe^{3+}$ ions in the ratio of ~1:1. The separated coal ash could be used for cleaning of technological liquid waste by means of the high gradient magnetic field.

Coal Petrological Characteristics of Korean Coal (국내탄의 석탄암석학적 특성)

  • Park, Hong Soo;Park, Suk Whan
    • Economic and Environmental Geology
    • /
    • v.22 no.2
    • /
    • pp.141-150
    • /
    • 1989
  • In order to make economic and geological evaluation of coal in Korea, proximate and ultimate analyses were carried out as well as coal petrological studies such as maceral analyses, vitrinite reflectance and sporinite fluorescence measurement. The coeffcient of correlation between each factor of both conventional utilization and coal petrological parameters were studied as in Table 5 and 6. Their conclusions were as follow: (1) for anthracite, the good parameters of coal rank are mean vitrinite reflectance, carbon content, hydrogen content and H/C atomic ratio: (2) for brown coal and sub-bituminous coal, the good parameters of coal rank are carbon content, calorific value, moisture content, hydrogen content, oxygen content and O/C atomic ratio as well as vitrinite reflectance and sporinite fluorescence. An attempt is made to infer the coalforming environment by utilization of coal petrological analyses and to make comparison of coal analyses with proximate and ultimate analyses throughout the island arc region including Japan, Philippine and Indonesia and continental region including USA, Canada and Australia. As a result, meceral composition of Paleozoic and Mesozoic anthracite are similar to that of the Paleozoic continental coals, which were formed under dry conditions or low water table, but the coalification degree suddenly increased during Daebo orogeny (middle Jurassic to lower Cretaceous). The Tertiary coal resembles those of Tertiary island arc region coal characterized by higher calorific value, volatile matter content and H/C atomic ratio and by the formation of coal under wet conditions or higher water table.

  • PDF

Mineralogical and Drying Characteristics of Chinese Low Rank Coal for Coal Gasification (석탄가스화를 위한 중국산 저급 석탄의 광물학적 및 건조 특성)

  • Park, Chong-Lyuck;Kim, Byoung-Gon;Jeon, Ho-Seok;Kim, Sang-Bae;Park, Suk-Hwan;Lee, Jae-Ryeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.199-209
    • /
    • 2010
  • Coal gasification technology in the sector of domestic clean coal technologies is being into the limelight since recent dramatic rise of international oil price. In this study, we used a low rank coal from Inner Mongolia, China as a starting material for gasification. Various properties including optical, mineralogical, X-ray spectroscopic, X-ray diffraction, and drying property were measured and tested in order to estimate the suitability of the coal to gasification. The coal was identified as a brown coal of lignite group from the measurement of vitrinite reflectance. The coal has very low slagging and fouling potentials, and the ignition temperature is about $250^{\circ}C$. The major impurities consist of quartz, siderite, and clay minerals. Additionally, the coal had moisture content above 28%. Tests for finding effective drying method showed that the microwave drying is more effective than thermal drying.

Mineralogy of Ferrihydrite and Schwertmannite from the Acid Mine Drainage in the Donghae Coal Mine Area (동해탄광일대의 산성광산배수에서 침전된 페리하이드라이트와 슈워트마나이트에 대한 광물학적 연구)

  • Kim, Jeong-Jin;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.191-198
    • /
    • 2003
  • The ochreous precipitates, reddish brown and brownish yellow in color, are pre- cipitated in the stream bottom of acid mine drainage (AMD) in the Donghae coal mine area. X-ray diffraction analysis shows that the reddish brown precipitate consists mainly of ferrihydrite with small amount of goethite, while the brownish yellow precipitate of schwertmannite. Thermal experiments show that ferrihydrite and schwertmannite partially convert to poorly-crystallized hematite at $400^{\circ}C$ and to well-crystallized hematite at $700^{\circ}C$.

Charts for estimating rock mass shear strength parameters

  • Wan, Ling;Wei, Zuoan;Shen, Jiayi
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.257-267
    • /
    • 2016
  • Charts are used extensively in slope practical application to meet the need of quick assessment of rock slope design. However, Charts for estimating the shear strength of the rock mass of a slope are considerably limited. In this paper, based on the Hoek-Brown (HB) criterion which is widely used in rock slope engineering, we present charts which can be used to estimate the Mohr-Coulomb (MC) parameters angle of friction ${\phi}$ and cohesion c for given slopes. In order to present the proposed charts, we firstly present the derivation of the theoretical relationships between the MC parameters and ${\sigma}_{ci}/({\gamma}H)$ which is termed the strength ratio (SR). It is found that the values of $c/{\sigma}_{ci}$ and ${\phi}$ of a slope depend only on the magnitude of SR, regardless of the magnitude of the individual parameters ${\sigma}_{ci}$(uniaxial compressive strength), ${\gamma}$(unit weight) and H (slope height). Based on the relationships between the MC parameters and SR, charts are plotted to show the relations between the MC parameters and HB parameters. Using the proposed charts can make a rapid estimation of shear strength of rock masses directly from the HB parameters, slope geometry and rock mass properties for a given slope.

Ultrasonic Effect on the Extraction of Ash-free coal from Low Rank Coal (저등급 석탄으로부터 초청정석탄의 추출과 초음파의 영향)

  • Lee, Sihyun;Kim, Sangdo;Jeong, Soonkwan;Rhim, Youngjun;Kim, Daehun;Woo, Kwangjae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.555-560
    • /
    • 2008
  • Extraction was performed to prepare ash-free coal from low rank coal under the temperature of $200-430^{\circ}C$ and initial pressure of 0.1MPa. Three kinds of coal samples with different rank were used and N-methyl-2-pyrrolidinone(NMP, polar), 1-methyl naphthalene(I-MN, non-polar), Light Cycle Oil(LCO, non-polar) were used as solvents. Results showed that higher extraction yield could be obtained with NMP than with 1-MN and LCO, but the ash concentration shows minimun in the case of 1-MN. Three operation modes were compared, that is, idle, agitation and ultrasonic extraction mode. From the results, it was found that the extraction yield and ash concentration were 70.09% and 1.03% under the agitation mode, 80.7% and 0.76% under the ultrasonic operation mode respectively in the case of NMP used at the temperature of $350^{\circ}C$. Similar results were obtained with 1-MN. Effect of ultrasonic on the extraction was estimated as 15-20% increase in the yields and 26% reduction in the ash concentration.

Corrosion of Alumina-Chromia Refractories by Alkali Vapors; II. Experimenal Approach

  • Lee, Kyung-Ho;Jesse . Brown Jr
    • The Korean Journal of Ceramics
    • /
    • v.1 no.2
    • /
    • pp.86-90
    • /
    • 1995
  • Theoretical predictions for thermodynamically stable phases which formed when alkali(sodium and potassium) vapors reacted with alumina-chromia refractories under coal gasifying atmosphere were confirmed experimentally using a laboratory-scale coal gasifying reaction system and a commercial alumina-chromia refractory using SEM, XRD, and EDAX. Alkali concentration profiles in the refractory as a function of time were also determined. The results showed that the compounds that formed were $X_2O{\cdot}Al_2O_3, X_2O{\cdot}Cr_2O_3, X_2O{\cdot}5Al_2O_3, X_2O{\cdot}7Al_2O_3, X_2O{\cdot}11Al_2O_3(X=Na^+ \;or\; K^+)$, depending upon the alkali concentration and time of exposure at high temperatures. The presence of sulfur in gasifying atmospheres did not appear to affect the alkali reaction produces. Alkali pentration into the alumina-chromia refractory was deep and the formation of the $Na_2O{\cdot}Al_2O_3/K_2O{\cdot}Al_2O_3$ compunds resulted in the serious deformation of the refractory due to the large volume expansion at the reaction surface. The hot face of the alumina-chromia refractory in service under an alkali environment is prone to failure by alkali attack.

  • PDF