• Title/Summary/Keyword: Brown Adipose Tissue(BAT)

Search Result 23, Processing Time 0.021 seconds

Effects of High Fat Diet on Serum Leptin and Insulin Level and Brown Adipose Tissue UCP 1 Expression in Rats (흰쥐에서 고지방식이가 혈중 렙틴 및 인슐린과 갈색지방조직의 UCP 1 발현에 미치는 영향)

  • 홍경희;강순아;김소혜;조여원
    • Journal of Nutrition and Health
    • /
    • v.34 no.8
    • /
    • pp.865-871
    • /
    • 2001
  • The adipose tissue hormone leptin has been proposed to be involved in the regulation of flood intake and energy expenditure via thermogenesis by uncoupling protein(UCP) in brown adipose tissue(BAT). The objective of the study was to examine the effects of high fat diet on the serum leptin levels, BAT UCPl expression and the body fat mass in rats after weaning. During experimental period of 12 weeks, 4 male Sprague-Dawley rats were killed for the baseline experiment at 4 weeks of age while the remaining rats were fed the two different diets: the control diet AIN-76A(n = 20), high fat(beef tallow) diet(n = 20) ad libitum, which provided 11.7% or 40% of calories as fat, respectively. At 16 weeks of age, the increase in the food efficiency ratio(FER) was related to fat mass in rats on high fat diet. Serum leptin level was increased by age and dietary high fat. There was no difference in serum insulin level between groups until 10 weeks of age, but rats fed high fat diet for 12 weeks showed hyperinsulinemia. The amount of body fat pads was increased significantly in high fat group compared to normal diet group. Visceral fat mass affected acutely by high fat diet, as a result, it was higher in rats fed high fat diet for 2 weeks than normal diet. At 16 weeks of age, BAT and visceral fat mass were significantly high in high fat group. Also, the serum leptin levels reflected the amount of body fat mass. BAT UCPI mRNA expression increased with age and dietary high fat. This study demonstrates that dietary high fat increased serum leptin levels, BAT UCPI expression and body fat mass. Futhermore, in rats fed high fat diets, the increases in leptin and UCPI expression counteracts only in part the excess adiposity and obesity.

  • PDF

Cryptotanshinone promotes brown fat activity by AMPK activation to inhibit obesity

  • Jie Ni;Aili Ye;Liya Gong;Xiafei Zhao;Sisi Fu;Jieya Guo
    • Nutrition Research and Practice
    • /
    • v.18 no.4
    • /
    • pp.479-497
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Activating brown adipose tissue (BAT) and browning of white adipose tissue (WAT) can protect against obesity and obesity-related metabolic conditions. Cryptotanshinone (CT) regulates lipid metabolism and significantly ameliorates insulin resistance. Adenosine-5'-monophosphate (AMP)-activated protein kinase (AMPK), a receptor for cellular energy metabolism, is believed to regulate brown fat activity in humans. MATERIALS/METHODS: The in vivo study included high-fat-fed obese mice administered orally 200/400 mg/kg/d CT. They were evaluated through weight measurement, the intraperitoneal glucose tolerance test (IPGTT), intraperitoneal insulin tolerance test (IPITT), cold stimulation test, serum lipid (total cholesterol, triglycerides, and low-density lipoprotein) measurement, hematoxylin and eosin staining, and immunohistochemistry. Furthermore, the in vitro study investigated primary adipose mesenchymal stem cells (MSCs) with incubation of CT and AMPK agonists (acadesine)/inhibitor (Compound C). Cells were evaluated using Oil Red O staining, Alizarin red staining, flow cytometry, and immunofluorescence staining to identify and observe the osteogenic versus adipogenic differentiation. Quantitative real-time polymerase chain reaction and the Western blot were used to observe related gene expression. RESULTS: In the diet-induced obesity mouse model mice CT suppressed body weight, food intake, glucose levels in the IPGTT and IPTT, serum lipids, the volume of adipose tissue, and increased thermogenesis, uncoupling protein 1, and the AMPK pathway expression. In the in vitro study, CT prevented the formation of lipid droplets from MSCs while activating brown genes and the AMPK pathway. AMPK activator enhanced CT's effects, while the AMPK inhibitor reversed the effects of CT. CONCLUSION: CT promotes adipose tissue browning to increase body thermogenesis and reduce obesity by activating the AMPK pathway. This study provides an experimental foundation for the use of CT in obesity treatment.

Effects of caloric restriction on the expression of lipocalin-2 and its receptor in the brown adipose tissue of high-fat diet-fed mice

  • Park, Kyung-Ah;Jin, Zhen;An, Hyeong Seok;Lee, Jong Youl;Jeong, Eun Ae;Choi, Eun Bee;Kim, Kyung Eun;Shin, Hyun Joo;Lee, Jung Eun;Roh, Gu Seob
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.335-344
    • /
    • 2019
  • Obesity causes inflammation and impairs thermogenic functions in brown adipose tissue (BAT). The adipokine lipocalin 2 (LCN2) has been implicated in inflammation and obesity. Herein, we investigated the protective effects of caloric restriction (CR) on LCN2-mediated inflammation and oxidative stress in the BAT of high-fat diet (HFD)-fed mice. Mice were fed a HFD for 20 weeks and then either continued on the HFD or subjected to CR for the next 12 weeks. CR led to the browning of the white fat-like phenotype in HFD-fed mice. Increased expressions of LCN2 and its receptor in the BAT of HFD-fed mice were significantly attenuated by CR. Additionally, HFD+CR-fed mice had fewer neutrophils and macrophages expressing LCN2 and iron-positive cells than HFD-fed mice. Further, oxidative stress and mitochondrial fission induced by a HFD were also significantly attenuated by CR. Our findings indicate that the protective effects of CR on inflammation and oxidative stress in the BAT of obese mice may be associated with regulation of LCN2.

Epac2a-knockout mice are resistant to dexamethasone-induced skeletal muscle atrophy and short-term cold stress

  • Song, Seung-Eun;Shin, Su-Kyung;Park, So-Young;Hwang, Il-Seon;Im, Seung-Soon;Bae, Jae-Hoon;Choi, Myung-Sook;Song, Dae-Kyu
    • BMB Reports
    • /
    • v.51 no.1
    • /
    • pp.39-44
    • /
    • 2018
  • Exchange protein directly activated by cAMP (Epac) 2a-knockout (KO) mice exhibit accelerated diet-induced obesity and are resistant to leptin-mediated adipostatic signaling from the hypothalamus to adipose tissue, with sustained food intake. However, the impact of Epac2a deficiency on hypothalamic regulation of sympathetic nervous activity (SNA) has not been elucidated. This study was performed to elucidate the response of Epac2a-KO mice to dexamethasone-induced muscle atrophy and acute cold stress. Compared to age-matched wild-type mice, Epac2a-KO mice showed higher energy expenditures and expression of myogenin and uncoupling protein-1 in skeletal muscle (SM) and brown adipose tissue (BAT), respectively. Epac2a-KO mice exhibited greater endurance to dexamethasone and cold stress. In wild-type mice, exogenous leptin mimicked the responses observed in Epac2a-KO mice. This suggests that leptin-mediated hypothalamic signaling toward SNA appears to be intact in these mice. Hence, the potentiated responses of SM and BAT may be due to their high plasma leptin levels.

Effects of maternal undernutrition during late pregnancy on the regulatory factors involved in growth and development in ovine fetal perirenal brown adipose tissue

  • Yang, Huan;Ma, Chi;Zi, Yang;Zhang, Min;Liu, Yingchun;Wu, Kaifeng;Gao, Feng
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.1010-1020
    • /
    • 2022
  • Objective: The experiment was conducted to evaluate the effects of maternal undernutrition during late pregnancy on the expressions of genes involved in growth and development in ovine fetal perirenal brown adipose tissue (BAT). Methods: Eighteen ewes with singleton fetuses were allocated to three groups at day 90 of pregnancy: restricted group 1 (RG1, 0.33 MJ metabolisable energy [ME]/kg body weight [BW]0.75/d, n = 6), restricted group 2 (RG2, 0.18 MJ ME/kg BW0.75/d, n = 6), and a control group (CG, ad libitum, 0.67 MJ ME/kg BW0.75/d, n = 6). The fetuses were removed at day 140 of pregnancy. All data were analyzed by using the analysis of variance procedure. Results: The perirenal fat weight (p = 0.0077) and perirenal fat growth rate (p = 0.0074) were reduced in RG2 compared to CG. In fetal perirenal BAT, the protein level of uncoupling protein 1 (UCP1) (p = 0.0001) was lower in RG1 and RG2 compared with CG and UCP1 mRNA expression (p = 0.0265) was decreased in RG2. The protein level of myogenic factor 5 (Myf5) was also decreased in RG2 (p = 0.0001). In addition, mRNA expressions of CyclinA (p = 0.0109), CyclinB (p = 0.0019), CyclinD (p = 0.0015), cyclin-dependent kinase 1 (CDK1) (p = 0.0001), E2F transcription factor 1 (E2F1) (p = 0.0323), E2F4 (p = 0.0101), and E2F5 (p = 0.0018) were lower in RG1 and RG2. There were decreased protein expression of peroxisome proliferator-activated receptor-γ (PPARγ) (p = 0.0043) and mRNA expression of CCAAT/enhancer-binding protein-α (C/EBPα) (p = 0.0307) in RG2 and decreased PPARγ mRNA expression (p = 0.0008) and C/EBPα protein expression (p = 0.0015) in both RG2 and RG1. Furthermore, mRNA expression of bone morphogenetic protein 4 (BMP4) (p = 0.0083) and BMP7 (p = 0.0330) decreased in RG2 and peroxisome proliferator-activated receptor co-activator-1α (PGC-1α) reduced in RG2 and RG1. Conclusion: Our observations support that repression of regulatory factors promoting differentiation and development results in the inhibition of BAT maturation in fetal perirenal fat during late pregnancy with maternal undernutrition.

Regulation of Systemic Energy Homeostasis by Peripheral Serotonin

  • Namkung, Jun;Oh, Chang-Myung;Park, Sangkyu;Kim, Hail
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.2
    • /
    • pp.43-45
    • /
    • 2016
  • Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. Serotonin is among those traditional pharmacological targets for anti-obesity treatment because central 5-HT functions as an anorexigenic neurotransmitter in the brain. Thus, there have been many trials aimed at increasing the activity of 5-HT in the central nervous system, and some of the developed methods are already used in the clinical setting as anti-obesity drugs. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Fat specific Tph1 knock-out (Tph1 FKO) mice exhibit similar phenotypes as mice with pharmacological inhibition of 5-HT synthesis, suggesting the localized effects of 5-HT in adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure in BAT and Htr2a KO mice exhibit the decreased lipid accumulation in WAT. These data suggest the clinical significance of the peripheral serotonergic system as a new therapeutic target for anti-obesity treatment.

The Study on the Effect of Acanthopanax Senticocus Herbal Acupuncture on Metabolic Syndrome in High-fat Diet Fed Mice (가시오가피약침(五加皮藥鍼)이 High-fat Diet로 유발(誘發)된 대사증후군(代謝症候群)에 미치는 영향(影響))

  • Yoo, Tae-seop;Koh, Hyung-kyun;Kang, Sung-keel
    • Journal of Acupuncture Research
    • /
    • v.22 no.3
    • /
    • pp.77-92
    • /
    • 2005
  • Objective : The aim of the study was to investigate the effect of Acanthopanax senticocus(AS) herbal acupuncture on the metabolic syndrome in high-fat diet fed mice. Methods : ICR mice were fed with high-fat diet to induce the metabolic syndrome. During the inducement of the metabolic syndrome, the groups were treated with AS herbal acupuncture with different concentrations(125mg/kg, 250mg/kg and 500mg/kg) to the point of Sinsu(BL23) everyday for 5 weeks. Thereafter, body weight, feed efficiency ratio, blood pressure, blood glucose, insulin level, insulin resistance, oral glucose tolerance test(OGTT), lipid profile(TG, TC, HDL-C, LDL-C, NEFA), mass of liver, histology of white adipose tissue(WAT) and brown adipose tissue(BAT), and expression of GLUT-4 and UCP-1 mRNA were measured. Results : The risk factors of metabolic syndrome such as obesity, non-insulin dependent diabetes mellitus(NIDDM), insulin resistance, hypertension, dyslipidemia were aggravated by high-fat diet for 5-weeks. AS herbal acupuncture inhibited the development of weight gain, hyperglycemia, hyperinsulinemia, insulin resistance, hypertension, dylipidemia and expression of GLUT-4 in WAT and UCP-1 mRNA in BAT, and also improved oral glucose intolerance and distribution of adipose tissue.

  • PDF

The Body Fat-lowering Effect of Garlic Powder in Peroxisome Proliferator-activated Receptor γ Coactivator-1α (PGC-1α)-luciferase Transgenic Mice (PGC-1α 형질전환 생쥐에서 마늘 분말의 체지방 감소 효과)

  • Lee, Mak-Soon;Kim, Yangha
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.5
    • /
    • pp.900-907
    • /
    • 2017
  • This study was performed to investigate the body fat-lowering effect of garlic powder in peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$)-luciferase transgenic mice (TG). In this study, we generated transgenic mice with a PGC-$1{\alpha}$ promoter (-970/+412 bp) containing luciferase as a reporter gene. Mice were fed a 45% high-fat diet for 8 weeks to induce obesity. Subsequently, mice were maintained on either a high-fat control diet (CON), or high-fat diets supplemented with 2% (GP2) or 5% (GP5) garlic powder for an additional 8 weeks. Dietary garlic powder reduced the body weight in the GP2 and GP5 groups, compared to the CON group. Furthermore, garlic supplementation significantly decreased the plasma levels of triglycerides, total cholesterol, and leptin in the GP5 group, compared to the CON group. Specifically, luciferase activity in liver, white adipose tissue (WAT), and brown adipose tissue (BAT) was increased by garlic supplementation in a dose-dependent manner. These results suggest that the body fat-lowering effect of garlic powder might be related to PGC-$1{\alpha}$ by the increase in luciferase activity in liver, WAT, and BAT. Furthermore, transgenic mice might be useful for evaluating the body fat-lowering effect of various health functional foods.

Effect of Cheongpesagan-tang on the Change of Inhibitory Effect against Lipase Activity and Weight Loss, Plasma and UCP1, 2 mRNA Expression in db/db Mouse (태음인 청폐사간탕이 lipase 활성저해 및 db/db mouse의 체중감량, 혈장지질, UCP 1, 2 발현에 미치는 영향)

  • Kim, Eun-Young;Sul, Yu-Kyung;Choi, Jae-Jung;Jeon, Soo-Hyung;Kim, Hoon;Kim, Jong-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.19 no.1
    • /
    • pp.171-185
    • /
    • 2007
  • 1. Objectvies This experimental study was designed to investigate the effect of cheongpesagan-tang extract on the obstruction of the lipase activity and weight, plasma, UCP1, 2 mRNA in db/db mouse. Material and Methods: The body weight loss, food intake, feeding efficiency ratio, weight of the internal organs (liver, kidney, epididymal fat, brown adipose tissue), plasma glucose, triglyceride, total cholesterol, white adipose tissue, adipocyte size distribution, expression of UCP1, 2 mRNA were measured in db/db mouse administered Cheongpesagan-tang extract for 6 weeks. These were then compared with those of control groups administered the diet. 2. Results 1) Inhibitory effect against lipase activity was Kilgyung(81.7%), Nabokja (73.1%), Seungma(73.0%), Daewhang (68.4%), Kalgeun (55.3%), Kobon(34.5%), Hwanggeum(4.2%). 2) In the sample group, the body weight was significantly decrease than that of control group. 3) In the sample group, the weight of epididymal fat showed significantly decrease than that of control group. 4) In the sample group, triglyceride showed significantly decrease than that of control group. 5) In the sample group, distribution of adipose tissue showed significantly larger than that of control group. 6) In the sample group, UCP1, 2 mRNA in BAT showed significantly increase than that of control group. 3. Conclusions These results show that cheongpesagan-tang has an effect on the treatment of obesity.

  • PDF

Analysis of UCP1 Expression in Rainbow Trout Gonadal Cell Line RTG-2 Indicates its Marginal Response to Adipogenic Inducers Compared to Mammalian Cell Lines

  • Sang-Eun Nam;Young-Joo Yun;Jae-Sung Rhee;Hyoung Sook Park
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.186-189
    • /
    • 2023
  • Uncoupling protein 1 (UCP1) is a unique mitochondrial membranous protein expressed in brown adipose tissue (BAT) in mammals. While its expression in response to cold temperatures and adipogenic inducers is well-characterized in mammals and human infants, the molecular characterization and expression of UCP1 in fish remain unexplored. To address this gap, we analyzed UCP1 expression in response to adipogenic inducers in a fish cell line, rainbow trout gonadal cells (RTG-2), and compared it with UCP1 expression in three mammalian preadipocytes, 3T3-L1, T37i, and WT1 exposed to the Peroxisome proliferator-activated receptor gamma (PPARγ) agonists, rosiglitazone (Rosi). In mammalian preadipocytes, UCP1 protein was highly expressed by Rosi, with an induction of adipogenesis observed in a time-dependent manner. This suggests that UCP1 plays a significant role in adipogenesis in mammals. However, RTG-2 cells showed no response to adipogenic inducers and exhibited only marginal expressions of UCP1. These results imply that RTG-2 cells may lack crucial responsive mechanisms to adipogenic signals or that the adipogenic response is regulated by other mechanisms. Further studies are needed to confirm these phenomena in fish preadipocytes when an appropriate cell line is established in future research.