• Title/Summary/Keyword: Broadcast image

Search Result 1,306, Processing Time 0.025 seconds

Video Content Editing System for Senior Video Creator based on Video Analysis Techniques (영상분석 기술을 활용한 시니어용 동영상 편집 시스템)

  • Jang, Dalwon;Lee, Jaewon;Lee, JongSeol
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.499-510
    • /
    • 2022
  • This paper introduces a video editing system for senior creator who is not familiar to video editing. Based on video analysis techniques, it provide various information and delete unwanted shot. The system detects shot boundaries based on RNN(Recurrent Neural Network), and it determines the deletion of video shots. The shots can be deleted using shot-level significance, which is computed by detecting focused area. It is possible to delete unfocused shots or motion-blurred shots using the significance. The system detects object and face, and extract the information of emotion, age, and gender from face image. Users can create video contents using the information. Decorating tools are also prepared, and in the tools, the preferred design, which is determined from user history, places in the front of the design element list. With the video editing system, senior creators can make their own video contents easily and quickly.

Deep Learning based Domain Adaptation: A Survey (딥러닝 기반의 도메인 적응 기술: 서베이)

  • Na, Jaemin;Hwang, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.511-518
    • /
    • 2022
  • Supervised learning based on deep learning has made a leap forward in various application fields. However, many supervised learning methods work under the common assumption that training and test data are extracted from the same distribution. If it deviates from this constraint, the deep learning network trained in the training domain is highly likely to deteriorate rapidly in the test domain due to the distribution difference between domains. Domain adaptation is a methodology of transfer learning that trains a deep learning network to make successful inferences in a label-poor test domain (i.e., target domain) based on learned knowledge of a labeled-rich training domain (i.e., source domain). In particular, the unsupervised domain adaptation technique deals with the domain adaptation problem by assuming that only image data without labels in the target domain can be accessed. In this paper, we explore the unsupervised domain adaptation techniques.

Exploratory Experimental Analysis for 2D to 3D Generation (2D to 3D 창의적 생성을 위한 탐색적 실험 분석)

  • Hyeongrae Cho;Ilsik Chang;Hyunseok Kang;Youngchan Go;Gooman Park
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.109-123
    • /
    • 2023
  • Deep learning has made rapid progress in recent years and is affecting various fields and industries. The art field cannot be an exception, and in this paper, we would like to explore and experiment and analyze research fields that creatively generate 2D images in 3D from a visual arts and engineering perspective. To this end, the original image of the domestic artist is learned through GAN or Diffusion Models, and then converted into 3D using 3D conversion software and deep learning. And we compare the results with prior algorithms. After that, we will analyze the problems and improvements of 2D to 3D creative generation.

Vehicle Detection Algorithm Using Super Resolution Based on Deep Residual Dense Block for Remote Sensing Images (원격 영상에서 심층 잔차 밀집 기반의 초고해상도 기법을 이용한 차량 검출 알고리즘)

  • Oh-Seol Kwon
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.124-131
    • /
    • 2023
  • Object detection techniques are increasingly used to obtain information on physical characteristics or situations of a specific area from remote images. The accuracy of object detection is decreased in remote sensing images with low resolution because the low resolution reduces the amount of detail that can be captured in an image. A single neural network is proposed to joint the super-resolution method and object detection method. The proposed method constructs a deep residual-based network to restore object features in low-resolution images. Moreover, the proposed method is used to improve the performance of object detection by jointing a single network with YOLOv5. The proposed method is experimentally tested using VEDAI data for low-resolution images. The results show that vehicle detection performance improved by 81.38% on mAP@0.5 for VISIBLE data.

A Study on Reconstruction Performance of Phase-only Holograms with Varying Propagation Distance (전파 거리에 따른 위상 홀로그램 복원성능 분석 및 BL-ASM 개선 방안 연구)

  • Jun Yeong Cha;Hyun Min Ban;Seung Mi Choi;Jin Woong Kim;Hui Yong Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.3-20
    • /
    • 2023
  • A computer-generated hologram (CGH) is a digitally calculated and recorded hologram in which the amplitude and phase information of an image is transmitted in free space. The CGH is in the form of a complex hologram, but it is converted into a phase-only hologram to display through a phase-only spatial light modulator (SLM). In this paper, in the process of including the amplitude information of an object in the phase information, when a technique that includes subsampling such as DPAC is used, we showed experimentally that the bandwidth of the phase-only hologram increases, and as a result, aliasing that was not present in the complex hologram can occur. In addition, it was experimentally shown that it is possible to generate a high-quality phase-only hologram by restricting the spatial frequency range even at a distance where the numerical reconstruction performance is degraded by aliasing.

HDR Video Reconstruction via Content-based Alignment Network (내용 기반의 정렬을 통한 HDR 동영상 생성 방법)

  • Haesoo Chung;Nam Ik Cho
    • Journal of Broadcast Engineering
    • /
    • v.28 no.2
    • /
    • pp.185-193
    • /
    • 2023
  • As many different over-the-top (OTT) services become ubiquitous, demands for high-quality content are increasing. However, high dynamic range (HDR) contents, which can provide more realistic scenes, are still insufficient. In this regard, we propose a new HDR video reconstruction technique using multi-exposure low dynamic range (LDR) videos. First, we align a reference and its neighboring frames to compensate for motions between them. In the alignment stage, we perform content-based alignment to improve accuracy, and we also present a high-resolution (HR) module to enhance details. Then, we merge the aligned features to generate a final HDR frame. Experimental results demonstrate that our method outperforms existing methods.

AI Model-Based Automated Data Cleaning for Reliable Autonomous Driving Image Datasets (자율주행 영상데이터의 신뢰도 향상을 위한 AI모델 기반 데이터 자동 정제)

  • Kana Kim;Hakil Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.302-313
    • /
    • 2023
  • This paper aims to develop a framework that can fully automate the quality management of training data used in large-scale Artificial Intelligence (AI) models built by the Ministry of Science and ICT (MSIT) in the 'AI Hub Data Dam' project, which has invested more than 1 trillion won since 2017. Autonomous driving technology using AI has achieved excellent performance through many studies, but it requires a large amount of high-quality data to train the model. Moreover, it is still difficult for humans to directly inspect the processed data and prove it is valid, and a model trained with erroneous data can cause fatal problems in real life. This paper presents a dataset reconstruction framework that removes abnormal data from the constructed dataset and introduces strategies to improve the performance of AI models by reconstructing them into a reliable dataset to increase the efficiency of model training. The framework's validity was verified through an experiment on the autonomous driving dataset published through the AI Hub of the National Information Society Agency (NIA). As a result, it was confirmed that it could be rebuilt as a reliable dataset from which abnormal data has been removed.

In-Loop Filtering with a Deep Network in HEVC (깊은 신경망을 사용한 HEVC의 루프 내 필터링)

  • Kim, Dongsin;Lee, So Yoon;Yang, Yoonmo;Oh, Byung Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.145-147
    • /
    • 2020
  • As deep learning technology advances, there have been many attempts to improve video codecs such as High-Efficiency-Video-Coding (HEVC) using deep learning technology. One of the most researched approaches is improving filters inside codecs through image restoration researches. In this paper, we propose a method 01 replacing the sample adaptive offset (SAO) filtering with a deep neural network. The proposed method uses the deep neural network to find the optimal offset value. The proposed network consists of two subnetworks to find the offset value and its type of the signal, which can restore nonlinear and complex type of error. Experimental results show that the performance is better than the conventional HEVC in low delay P and random access mode.

  • PDF

Mukbang and Cookbang watching and dietary behavior in Korean adolescents

  • Jimin Sung;Jae-Young Hong;Jihong Kim;Jihye Jung;Seoeun Choi;Ji Yun Kang;Mi Ah Han
    • Nutrition Research and Practice
    • /
    • v.18 no.4
    • /
    • pp.523-533
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Given that adolescents watch Mukbang (eating broadcast) more frequently than other age groups, interest in the potential health effects of watching Mukbang and Cookbang (cooking broadcast) is growing. This study aimed to determine the status of watching Mukbang and Cookbang among Korean adolescents and its relationship with their dietary behaviors. SUBJECTS/METHODS: We used data from the 18th Korea Youth Risk Behavior Survey, conducted in 2022 (n = 51,850). The study included the frequency of watching Mukbang and Cookbang and the self-rated impact of watching them. Dietary behaviors included consumption of the following items: fruits (≥ once a day), vegetables (≥ 3 times a day), fast foods (≥ 3 times a week), late-night snacks (≥ 3 times a week), caffeinated drinks (≥ 3 times a week), and sweet-flavored drinks (≥ 3 times a week). Furthermore, obesity, weight loss attempts during the past 30 days, body image distortion, and inappropriate methods to control weight were also included. RESULTS: Among adolescents, 70.6% watched Mukbang and Cookbang, and 13.2% watched them more than 5 times a week. Approximately 27.6% of the adolescents responded that they were influenced by watching Mukbang and Cookbang. Adolescents who frequently watched Mukbang and Cookbang consumed less vegetable and fruit; however, the likelihood of consuming fast food, late-night snacks, sugary drinks, and caffeinated drinks increased. In addition, they were more likely to attempt inappropriate weight-loss methods and become obese. Adolescents who responded that their eating habits were influenced by watching Mukbang and Cookbang were more likely to have unhealthy eating behavior compared to the group who responded that their habits were not influenced by these shows. CONCLUSION: Watching Mukbang and Cookbang is common among Korean adolescents and is associated with unhealthy dietary behaviors. Prospective studies, including broadcasting content, should evaluate the impact of Mukbang and Cookbang on health.

Comparison of Objective Metrics and 3D Evaluation Using Upsampled Depth Map (깊이맵 업샘플링을 이용한 객관적 메트릭과 3D 평가의 비교)

  • Mahmoudpour, Saeed;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.204-214
    • /
    • 2015
  • Depth map upsampling is an approach to increase the spatial resolution of depth maps obtained from a depth camera. Depth map quality is closely related to 3D perception of stereoscopic image, multi-view image and holography. In general, the performance of upsampled depth map is evaluated by PSNR (Peak Signal to Noise Ratio). On the other hand, time-consuming 3D subjective tests requiring human subjects are carried out for examining the 3D perception as well as visual fatigue for 3D contents. Therefore, if an objective metric is closely correlated with a subjective test, the latter can be replaced by the objective metric. For this, this paper proposes a best metric by investigating the relationship between diverse objective metrics and 3D subjective tests. Diverse reference and no-reference metrics are adopted to evaluate the performance of upsampled depth maps. The subjective test is performed based on DSCQS test. From the utilization and analysis of three kinds of correlations, we validated that SSIM and Edge-PSNR can replace the subjective test.