• Title/Summary/Keyword: Brittle

Search Result 1,762, Processing Time 0.036 seconds

Media Characteristics of PVA-derivative Hydrogels Using a CGA Technique (CGA 제조기법을 응용한 PVA 하이드로젤의 담체 특성)

  • Yoon, Mi-Hae; Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.299-308
    • /
    • 2009
  • We manufactured PVA-derived hydrogels using a foam generation technique that has been widely used to prepare colloidal gas aphrons(CGA). These gels were differentiated to the conventional gels such as for medical or pharmaceutical applications, which have tiny pores and some crystalline structure. Rather these should be used in de-pollution devices or adhesion of cells or biomolecules. The crosslinkers used in this work were amino acid, organic acid, sugars and lipids(vitamins). The structures of the gels were observed in a scanned electron microscope. Amino acids gels showed remarkably higher swelling ratios probably because their typical functional groups help constructing a highly crosslinked network along with hydrogen bonds. Boric acid and starch would catalyze dehydration while structuring to result in much lower water content and accordingly high gel content, leading to less elastic, hard gels. Bulky materials such as ascorbic acid or starch produced, in general, large pores in the matrices and also nicotinamide, having large hydrophobic patches was likely to enlarge pore size of its gels as well since the hydrophobicity would expel water molecules, thus leading to reduced swelling. Hydrophilicity(or hydrophobicity), functional groups which are involved in the reaction or physical linkage, and bulkiness of crosslinkers were found to be more critical to gel's cross linking structure and its density than molecular weights that seemed to be closely related to pore sizes. Microscopic observation revealed that pores were more or less homogeneous and their average sizes were $20{\mu}m$ for methionine, $10-15{\mu}m$ for citric acid, $50-70{\mu}m$ for L-ascorbic acid, $30-40{\mu}m$ for nicotinamide, and $70-80{\mu}m$ for starch. Also a sensory test showed that amino acid and glucose gels were more elastic meanwhile acid and nicotinamide gels turned out to be brittle or non-elastic at their high concentrations. The elasticity of a gel was reasonably correlated with its water content or swelling ratio. In addition, the PVA gel including 20% ascorbic acid showed fair ability of cell adherence as 0.257mg/g-hydrogel and completely degraded phenanthrene(10 mM) in 240 h.

Flexural Behavior of Reinforced Concrete Beams Retrofitted with Modified Polymer Mortar System (폴리머 모르타르로 단면을 복구한 철근콘크리트 보의 휨 거동)

  • Hong Geon-Ho;Choi Eun-Gyu;Lee Su-Jin;Shin Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.94-101
    • /
    • 2004
  • This study shows the test results of seven RC beams retrofitted with modified polymer system and parametric study about the effects of tensile strength of retrofitting materials by analytical method on the flexural behavior. The main parameters are the retrofitted depth and length. The beams are loaded to the failure by four-point loading. Test results show that the effect of the retrofitted length on the structural behavior is more significant than that of depth. As the retrofitted depth is increased, the beams represents the brittle failure mode The non-linear analysis is carried out to grasp the effect of the tensile strength of retrofitting material on the structural behavior. As the retrofitted depth and length are increased, the tensile strength becomes more effective so these parameters should be considered to determine the retrofitted area. The analytical results show that failure strength is less than that of experimental results, but the stiffness is vice versa.

Tension Lap Splice Length in High-Strength Concrete Flexural Members (고강도 콘크리트 휨부재의 인장 겹침이음길이에 관한 연구)

  • Lee, Gi-Yeol;Kim, Woo;Lee, Hwa-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.753-761
    • /
    • 2009
  • This paper presents the test results of total 24 beam-end specimens to investigate the effect of high-strength concrete and cover thickness on the development resistance capacity in tensile lap splice length regions. Based on bond characteristics that an increase in concrete strength results in higher bond stress and shortening of the transfer length, cracking behavior that thin cover thickness induced a splitting crack easily and brittle crack propagation, current design code that development length provisions as uniform bond stress assumption was investigated apply as it. The results showed that as higher strength concrete was employed, not only development resistance capacity was influenced by cover thickness, but also more sufficient safety factor reserved shorter than the lap splice length provision in current design code. From experimental research results, high-strength concrete development length was not inverse ratio of $\sqrt{f_{ck}}$ but directly inverse of $f_{ck}$, and it is also said that there is a certain limit length of the embedded steel over which the assumption of uniform bond stress distribution is valid specially for high-strength concrete not having a same embed length such as normal-strength concrete in current design criteria hypothesis.

Tension Stiffening of Reinforced High Performance Fiber Reinforced Cementitious Composites (HPFRCC) (철근 보강 고성능 섬유보강 콘크리트의 인장 강성)

  • Lee, Seong-Cheol;Kim, Jae-Hwa;Cho, Jae-Yeol;Shin, Kyung-Joon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.859-866
    • /
    • 2010
  • To overcome weak and brittle tensile characteristics of concrete, many studies have been conducted on fiber reinforced concrete (FRC). Recently, high performance fiber reinforced cementitious composites (HPFRCC), which shows strain hardening behavior, has been actively investigated. However, most of the studies focused on the material behavior of HPFRCC itself. Only a few studies have been conducted on the tensile behavior of HPFRCC with steel reinforcement. Therefore, a tension stiffening test for HPFRCC members has been conducted in this study in order to investigate the effect of a reinforcing bar on the tensile behavior of HPFRCC. Tensile stress-strain relationship of HPFRCC has been derived from the tests. The HPFRCC resisted tensile stress continuously from the first cracking to the yield of reinforcing bar. Through the comparison with the tensile behavior of HPFRCC members without a reinforcement, it was shown the tensile strength and capacity of HPFRCC were reduced due to the combined effect of the high shrinkage of HPFRCC, restraining effect of steel reinforcement, and the strain hardening behavior of HPFRCC. It is expected that the tension stiffening test results can be useful for an application of HPFRCC with steel reinforcement as structural members.

TENSILE STRENGTH OF LASER WELDED-TITANIUM AND GOLD ALLOYS (티타늄과 금합금의 레이저 용접부의 인장강도)

  • Song, Yun-Gwan;Ha, Il-Soo;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.200-213
    • /
    • 2000
  • Lasers have given dentistry a new rapid, economic, and accurate technique for metal joining. Although laser welding has been recommended as an accurate technique, there are some limitations with this technique. For example, the two joining surfaces must have a tight-fitting contact, which may be difficult to achieve in some situations. The tensile samples used for this study were made from a custom-made pure titanium and type III gold alloy plates. 27 of 33 specimens were sectioned perpendicular to their long axis with a carborundum disk and water coolant. Six specimens remained and served as the control group. A group of 6 specimens was posed as butt joints in custom parallel positioning device with a feeler gauge at each of three gaps : 0.00, 0.25. and 0.50mm. All specimens were then machined to produce a uniform cross-sectional dimension, none of the specimens was subjected to any subsequent form of heat treatment. Scanning electron microscopy was performed on representative tested specimens at fractured surfaces in both the parent metal and the weld. Vickers hardness was measured at the center of the welds with a micropenetrometer using a force of 300gm for 15 seconds. Measurement was made at approximately $200{\mu}m\;and\;500{\mu}m$ deep from each surface. One-way analysis of variance (ANOVA) and Scheffe's test was calculated to detect differences between groups. The purpose of this study is to compare the strength and properties of the joint achieved at various butt Joint gaps by the laser welding of type III gold alloy and pure titanium tensile specimens in an argon atmosphere. The results of this study were as follows : 1. When indexing and welding pure titanium, there was no decrease in ultimate tensile strength as compared with the unsectioned alloys for indexing gaps of 0.00 to 0.50mm, although with increasing gap size may come increased distortion (p>0.05). 2. When indexing and welding type III gold alloy, there were significant differences in ultimate tensile strength among groups with weld gaps of 0.00mm, 0.25 and 0.50mm, and the control group. Group with butt contact without weld gap demonstrated a significant higher ultimate tensile strength than groups with weld gaps of 0.25 and 0.50mm (p<0.05). 3. When indexing and welding the different metal combination of type III gold alloy and pure titanium, there were significant differences in ultimate tensile strength between groups with weld gaps of 0.00, 0.25, and 0.50mm. However, the mechanical properties of the welded joint would become too brittle to be acceptable clinically (p<0.05). 4. The presence of large pores in the laser welded joint appears to be the most important factor in controlling the tensile strength of the weld in both pure titanium and type III gold alloy.

  • PDF

A Making of Aesthetic Dental restorations with Nano Hybrid Ceramic material by CAD/CAM System (치과 CAD/CAM용 Nano Hybrid Ceranic 소재를 이용한 심미 치과보철물의 제작)

  • Choi, Beom-jin
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.25 no.2
    • /
    • pp.98-108
    • /
    • 2016
  • In recent days, perhaps the biggest driver in new material development is the desire to improve restorations esthetics compared to the traditional metal substructure based ceramics or all-ceramic restorations. Each material type performs differently regarding strength, toughness, effectiveness of machining and the final preparation of the material prior to placement. For example, glass ceramics are typically weaker materials which limits its use to single-unit restorations. On the other hand, zirconia has a high fracture toughness which enables multi-unit restorations. This material requires a long time sintering procedure which excludes its use for fast chair side production. Hybrid ceramic material developed for CAD/CAM system is contained improved nano ceramic elements. This new material, called a Resin Nano Hybrid Ceramic is unique in durability of function and aesthetic base compositions. The new nano-hybrid ceramic material is not a composite resin. It is also not a pure ceramic. The material is a mixture of both and consists of nano-ceramic fillers. Like a composite, the material is not brittle and is fracture resistant. Like a glass ceramic, the material has excellent polish retention for lasting esthetics. The material is easily machined by chair side or in a dental lab side, could be an useful restorative option.

Properties of Strength and Stress-Strain of Recycled-Plastic Polymer Concrete (폐플라스틱 재활용 폴리머콘크리트의 강도와 응력-변형률 특성)

  • Jo Byung-Wan;Koo Jakap;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.329-334
    • /
    • 2005
  • The use of Polymer Concrete (PC) is growing very rapidly in many structural and construction applications such as box culverts, hazardous waste containers, trench lines, floor drains and the repair and overlay of damaged cement concrete surfaces in pavements, bridges, etc. However, PC has a defect economically because resin which be used for binder is expensive. Therefore the latest research is being progressed to replace existing resin with new resin which can reduce the high cost. Here, Polymer concrete using the recycled PET(polyethylene terephthalate) has some merits such as decrease of environmental destruction, decrease of environmental pollution and development of new construction materials. The variables of this study are amount of resin, curing condition and maximum size of coarse aggregate to find out mechanic properties of this. Stress-strain curve was obtained using MTS equipment by strain control. The results indicated that modulus of elasticity was increased gradually in an ascending branch of curve, as an increase of resin content. Compressive strength was the highest for resin content of $13\%$. And Compressive strength was increased as maximum size of coarse aggregate increases. The strain at maximum stress increases with an increase of resin content and size of coarse aggregate. For the descending branch of stress-strain curve the brittle fracture was decreased when it was cured at the room temperature compared to high temperature.

Pinching and Energy Dissipation Capacity of Flexure-Dominated RC Members (휨지배 철근콘크리트 부재의 핀칭과 에너지 소산능력)

  • Park, Hong-Gun;Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.594-605
    • /
    • 2003
  • Pinching is an important property of reinforced concrete member which characterizes its cyclic behavior. In the present study, numerical studies were performed to investigate the characteristics of pinching behavior and the energy dissipation capacity of flexure-dominated reinforced concrete members. By investigating existing experiments and numerical results, it was found that flexural pinching which has no relation with shear action appears in RC members subject to axial compression force. However, members with specific arrangement and amount of re-bars, have the same energy dissipation capacity regardless of the magnitude of the axial force applied even though the shape of the cyclic curve varies due to the effect of the axial force. This indicates that concrete as a brittle material does not significantly contribute to the energy dissipation capacity though its effect on the behavior increases as the axial force increases, and that energy dissipation occurs primarily by re-bars. Therefore, the energy dissipation capacity of flexure-dominated member can be calculated by the analysis on the cross-section subject to pure bending, regardless of the actual compressive force applied. Based on the findings, a practical method and the related design equations for estimating energy dissipation capacity and damping modification factor was developed, and their validity was verified by the comparisons with existing experiments. The proposed method can be conveniently used in design practice because it accurately estimates energy dissipation capacity with general design parameters.

Flexural Capacity of Precast Concrete Triple Ribs Slab (프리캐스트 콘크리트 트리플 리브 슬래브의 휨성능)

  • Hwang, Seung-bum;Seo, Soo-yeon;Lee, Kang-cheol;Lee, Seok-hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.3-11
    • /
    • 2016
  • The concern about hollow core PC slab has been increased to improve the workability during a construction of building by reducing self weight of structural members. In this manner, recently, TRS (Tripple Ribs Slab) was developed as a new type of half PC slab system. TRS member consists of the triple webs and the bottom flange prestressed by strands. The slab system is completed by casting of topping concrete on the TRS after filling styrofoam between the webs. This paper, presents a flexural experiment to investigate the flexural capacity of the TRS. Five full scale TRS members were made and tested under simple support condition to be failed by flexure and their strength was evaluated by code equations; the variables in the test are the depth and the presence of topping or raised spot formed when slip-forming. In addition, a nonlinear sectional analysis was performed for the specimens and the result was compared with the test results. From the study, it was found that the TRS has enough flexural strength and ductility to resist the design loads and its strength can be suitably predicted by using code equations. The raised spot did not affect the strength so that the spot need not to be removed by doing additional work. For the more accurate prediction of TRS's flexural behavior by using nonlinear sectional analysis, it is recommended to consider the concrete's brittle property due to slip-forming process in the modeling.

Correlation Between Tensile Strength and Compressive Strength of Ultra High Strength Concrete Reinforced with Steel Fiber (초고강도 강섬유 보강 콘크리트의 인장강도와 압축강도 사이의 상관관계에 관한 연구)

  • Bae, Baek-Il;Choi, Hyun-Ki;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.253-263
    • /
    • 2015
  • Ultra-high strength concrete which have 100 MPa compressive strength or higher can be developed applying RPC(Reactive Powder Concrete). Preventing brittle failure under compression and tension, ultra-high strength concrete usually use the steel fibers as reinforcements. For the effective use of steel fiber reinforced ultra-high strength concrete, estimation of tensile strength is very important. However, there are insufficient research results are available with no relation between them. Therefore, in this study, correlation between compressive strength and tensile strength of ultra-high strength concrete was investigated by test and statistical analysis. According to test results, increasing tendency of tensile strength was also shown in the range of ultra-high strength. Evaluation of test results of this study and collected test results were carried out. Using 284 splitting test specimens and 265 flexural test specimens, equations suggested by previous researchers cannot be applied to ultra-high strength concrete. Therefore, using database and test results, regression analysis was carried out and we suggested new equation for splitting and flexural tensile strength of steel fiber reinforced ultra-high strength concrete.