• Title/Summary/Keyword: Brittle

Search Result 1,761, Processing Time 0.03 seconds

Influence Nb Addition and Transformation Temperature on Impact Properties of Low-Carbon Steels (Nb 첨가에 따른 저탄소강의 충격 특성에 미치는 변태 온도의 영향)

  • Lee, Sang-In;Kang, Jun-Young;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.590-597
    • /
    • 2016
  • In this study, six kinds of low-carbon steel specimens with different ferrite-pearlite microstructures were fabricated by varying the Nb content and the transformation temperature. The microstructural factors of ferrite grain size, pearlite fraction, interlamellar spacing, and cementite thickness were quantitatively measured based on optical and scanning electron micrographs; then, Charpy impact tests were conducted in order to investigate the correlation of the microstructural factors with the impact toughness and the ductile-brittle transition temperature (DBTT). The microstructural analysis results showed that the Nb4 specimens had ferrite grain size smaller than that of the Nb0 specimens due to the pinning effect resulting from the formation of carbonitrides. The pearlite interlamellar spacing and the cementite thickness also decreased as the transformation temperature decreased. The Charpy impact test results indicated that the impact-absorbed energy increased and the ductile-brittle transition temperature decreased with addition of Nb content and decreasing transformation temperature, although all specimens showed ductile-brittle transition behaviour.

Brittle Crack Arrestability of Thick Steel Plates for Shipbuilding (선급용 고강도 극후물재의 취성파괴 정지 성능에 관한 연구)

  • An, Gyu-Baek;Ryu, Kang-Mook;Park, Joon-Sik;Jeong, Bo-Young;Kim, Tae-Su;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.47-53
    • /
    • 2010
  • In recent time there is vigorous requirement for the use of thick steel plate in various industrial fields including shipbuilding industry. Especially, with the continual increases in marine transportation volumes on a global scale, the steel of container ships has become thicker and thicker with the increased size of ships. In addition, the brittle crack arrestability of heavy thick plates was big issue, in recently. In this study, crack arrest test were conducted in order to investigate the crack arrestability of thick plates for shipbuilding steels, where test plate thicknesses were 50mm and 80mm. This paper introduces the brittle crack arrestability of heavy thick plates with thickness effect for shipbuilding.

Effect of Pearlite Interlamellar Spacing on Impact Toughness and Ductile-Brittle Transition Temperature of Hypoeutectoid Steels (아공석강의 충격인성 및 연성-취성 천이온도에 미치는 펄라이트 층상간격의 영향)

  • Lee, Sang-In;Kang, Jun-Young;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.417-422
    • /
    • 2015
  • In this study, low-carbon hypoeutectoid steels with different ferrite-pearlite microstructures were fabricated by varying transformation temperature. The microstructural factors such as pearlite fraction and interlamellar spacing, and cementite thickness were quantitatively measured and then Charpy impact tests conducted on the specimens in order to investigate the correlation of the microstructural factors with impact toughness and ductile-brittle transition temperature. The microstructural analysis results showed that the pearlite interlamellar spacing and cementite thickness decreases while the pearlite fraction increases as the transformation temperature decreases. Although the specimens with higher pearlite fractions have low absorbed energy, on the other hand, the absorbed energy is higher in room temperature than in low temperature. The upper-shelf energy slightly increases with decreasing the pearlite interlamellar spacing. However, the ductile-brittle transition temperature is hardly affected by the pearlite interlamellar spacing because there is an optimum interlamellar spacing dependent on lamellar ferrite and cementite thickness and because the increase in pearlite fraction and the decrease in interlamellar spacing with decreasing transformation temperature have a contradictory role on absorbed energy.

Brittle Deformation History Based on the Analyses of Dikes and Faults within Sedimentary Rocks on Geoje Island, SE Korea

  • Hategekimana, Francois;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.239-255
    • /
    • 2021
  • Kinematic analyses of magmatic intrusions and faults can provide useful information on stress conditions and chronological relationships between dike emplacement and brittle deformation events. We studied structures in rocks exposed on a coastal platform in Geoje Island off the southern Korean Peninsula because of its well-developed dikes and faults. The geology of the study area includes the Cretaceous Seongpo-ri Formation, which is composed mostly of shale, sandstone, and hornfels intruded by magmatic dikes. Most of the dikes are developed along pre-existing structural features (faults and fractures), indicating that their emplacements were structurally controlled. Because dikes commonly open along the direction of the minimum principal stress, the direction of this stress can be obtained from dike geometry and orientation through the matching of piercing points on either side of a dike. In addition, the deformed dikes can give information regarding later deformation. On the basis of the kinematic analyses, we identified five deformation events in the study area, which are kinematically related to changes of the regional maximum principal stress. Results indicate that the structures in the study area have been controlled predominantly by episodes of reactivation of the NNE-trending Yangsan strike-slip fault, located to the northeast of the study area, under different stress regimes. In a wider tectonic context, the brittle deformation of the rocks of Geoje Island was probably induced by interactions among the Philippine Sea, Pacific, and Eurasian plates, including changes in subduction parameters with respect to the latter two plates over time.

Study of Brittle Crack Propagation Welding for EH40 Steel Plate in Shipbuilding Steel (조선용 EH40 강판의 용접부 취성 균열전파정지에 관한 연구)

  • Choi, Kyung-Shin;Lee, Sang-Hoon;Chung, Won-Jee;Hwang, Hui-Geon;Hong, Seok-Han;Hong, Ji-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • Recent economic trends are worsening and becoming longer, and Korean shipbuilding is focused on high value added and high technology, especially for LNG carriers and large container ships. Both ship types increased in size in the 2010s but have requirements such as high strength, toughness at low temperatures and continuous weldability for preventing brittle fractures at service temperatures. In particular, as container ships become larger, the International Classification Society (IACS) has established a provision (IACS UR S33) that mandates the use of BCA (Brittle Crack Arrest) certified vessels for large container vessels contracted after 2014 to ensure safety. Therefore, studies on BCA 47Y.P are currently being undertaken, but BCA 40Y.P has not been actively studied yet. We will test BCA 40Y.P to verify why it can be applied to a large container ship and measure fatigue cracking.

Comparison of the Characteristics of FCAW and SAW for the Brittle Crack Propagation of Welded Parts of BCA Steel in Container Ships (컨테이너선의 후 물재 용접부 취성 균열 전파에 대한 FCAW와 SAW의 비교 특성에 관한 연구)

  • Choi, Kyung-Shin;Lee, Sang-Hoon;Choi, JeongJu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.24-32
    • /
    • 2021
  • The size of container ships is increasing to increase the cargo loading capacity. However, container ships are limited in terms of the hull longitudinal strength. To overcome this limitation, brittle crack arrest steel can be used. This study was aimed at examining the influence of the heat input on the welding procedures of flux cored arc welding and submerged arc welding. In the experiment, the crack tip opening displacement test, which pertains to a parameter of fracture mechanics, was performed, and a 3-point bending tester was adopted. Based on the results, the crack measurement method was presented, and the stress expansion coefficient value for the pre-fatigue crack length was derived according to the heat input after the pre-cracking length was measured. It was noted that the heat input affected the crack tip opening displacement of brittle crack arrest steel.

A Study on Characteristic of Fracture in Lap Joint Welded STS429L (STS429L 겹침 용접부의 파단 특성에 관한 연구)

  • Choi, Dong-Soon;Kim, Jae-Seong;Kim, Hyun-Jae;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.27 no.5
    • /
    • pp.49-54
    • /
    • 2009
  • Recently, a demand of ferritic STS is increasing rapidly in automobile exhaust system. Exhaust manifolds are the part nearest to the engine so that the material is exposed to high temperature exhaust gas. Excellent heat resistant properties, especially high temperature strength, thermal fatigue resistance and high corrosion resistance are necessary for these parts. STS429L contains 15 weight percent of Cr and low Mo, so has good price competitive. And it has excellent high temperature strength and corrosion resistance, so receives attentions as material that applying to exhaust manifold. In tensile test of lap joint welded STS 429L, most of specimens are failed in base metal, but occurs brittle fracture in weld metals at some specimens in the face of good welding conditions. In the process of tensile test, lap joint welded STS429L specimens are transformed locally. The brittle fracture occurs that local transforming area exists in weld metals. But, butt welding specimens made by same materials showed ductile fracture in tensile test and bending test. In this study, suppose the reason of brittle fracture is in the combined local transform and tensile stress, through analysis of bead geometry, evaluate geometrical factor of brittle fracture in lap joint welded STS429L.

The extent and depth of brittle failure around circular tunnel with stress conditions (응력조건에 따른 원형터널 주변의 취성파괴범위와 파괴심도)

  • Cheon, Dae-Sung;Park, Chul-Whan;Jeon, Seok-Won;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.17 no.4
    • /
    • pp.311-321
    • /
    • 2007
  • Failure of underground structures in hard rocks is a function of the in-situ stress, the intact rock strength and the distribution of fractures in the rock mass. At highly stressed regime, brittle failure is often observed due to excavation-induced stress. The characteristics of brittle failure are classified as failure grade, failure initiation stress, extent of failure and depth of failure. For safety construction of underground structures, these characteristics of brittle failure with stress conditions should be understood. In this study we evaluated the relationship between the extent and depth of failure with stress conditions for failure happened model specimens through true triaxial model experiments. The extent and depth of failure were determined using visual observation and computed tomography (CT). The results indicate that the depth of failure was affected by differential stress perpendicular to the axis of tunnel. However the extent of failure was irrelevant to the stress conditions.

A Boundary Element Analysis for Damage and Failure Process of Brittle Rock using ERACOD (FRACOD를 이용한 취성 암석의 손상 및 파괴에 대한 경계요소 해석)

  • ;Baotang Shen;Ove Stephansson
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.248-260
    • /
    • 2004
  • Damage in brittle rock due to stress increase starts from initiation of microcracks, and then results in failure by forming macro failure planes due to propagation and coalescence of these discrete cracks. Conventionally, continuum approaches using macro-failure criteria or a number of elasto-plastic models have been major solution to implement rock damage and failure. However, actual brittle failure processes can be better described in phenomenological approach if initiation and propagation of discrete fractures are explicitly considered. This study presents damage and failure process of rock using a boundary element code, FRACOD, which has been developed to model fracturing process of rocks. Through a series of numerical uniaxial compressive tests, the feasibility of the developed model was verified, and realistic rock failure process was reproduced considering scale effects in rocks. In addition, the fracturing process and the corresponding rock damage in the vicinity of deep shaft in rock mass were presented as an application of this approach. This approach will be expected to contribute to finding better engineering solutions for the analysis of stability problems in brittle rock masses.

Metastatic Inhibitory and Radical Scavenging Efficacies of Saponins Extracted from the Brittle Star (Ophiocoma erinaceus)

  • Amini, Elaheh;Nabiuni, Mohammad;Baharara, Javad;Parivar, Kazem;Asili, Javad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4751-4758
    • /
    • 2015
  • Echinodermata use saponins in chemical defense against pathogens and predators. The molecular mechanisms of antimetastatic effects of brittle star saponins are still unknown. The present study examined antioxidant capacity and invasive ability in HeLa carcinoma cells exposed to brittle star crude saponins. Discolorating methods with DPPH and ABTS and expression of SOD-2 with RT-PCR were used to estimate the antioxidant activity. The anti-invasive activity of extracted saponins was examined through adhesion of HeLa cells to extracellular matrix, wound healing and evaluation of the mRNA levels of MMP-2 and MMP-9 by real time-PCR. The results showed that extracted saponins had cytotoxicity against cervical cancer cells and ABTS and DPPH scavenging properties with $IC_{50}$ values of 604.5, $1012{\mu}g/ml$, respectively. Further, we found that, in wound healing assay, brittle star saponins could prevent invasion of HeLa cells in a concentration dependent manner. Furthermore, cell adhesion assay demonstrated blockage of cell attachment to extracellular matrix with an $IC_{50}$ concentration of $16.1{\mu}g/ml$. The significant dose dependent down regulation of MMP-2 and MMP-9 in treated cells demonstrated that isolated saponins can decline tumor metastasis in vitro. The brittle star saponins remarkably prevented cervical cancer invasion and migration associated with down regulation of matrix metalloproteinase expression. Therefore, saponins could be suggested as an anti-invasive candidate against cervical cancer and an antioxidant as well.