• Title/Summary/Keyword: Brightness temperature

Search Result 450, Processing Time 0.024 seconds

Properties of High Power Flip Chip LED Package with Bonding Materials (접합 소재에 따른 고출력 플립칩 LED 패키지 특성 연구)

  • Lee, Tae-Young;Kim, Mi-Song;Ko, Eun-Soo;Choi, Jong-Hyun;Jang, Myoung-Gi;Kim, Mok-Soon;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Flip chip bonded LED packages possess lower thermal resistance than wire bonded LED packages because of short thermal path. In this study, thermal and bonding properties of flip chip bonded high brightness LED were evaluated for Au-Sn thermo-compression bonded LEDs and Sn-Ag-Cu reflow bonded LEDs. For the Au-Sn thermo-compression bonding, bonding pressure and bonding temperature were 50 N and 300oC, respectively. For the SAC solder reflow bonding, peak temperature was $255^{\circ}C$ for 30 sec. The shear strength of the Au-Sn thermo-compression joint was $3508.5gf/mm^2$ and that of the SAC reflow joint was 5798.5 gf/mm. After the shear test, the fracture occurred at the isolation layer in the LED chip for both Au-Sn and SAC joints. Thermal resistance of Au-Sn sample was lower than that of SAC bonded sample due to the void formation in the SAC solder.

Evaluation of Blue Light Hazards in LED Lightings (LED 조명에 대한 청색광 위험 평가)

  • Jung, Myoung Hoon;Yang, Seok-Jun;Yuk, Ju Sung;Oh, Sang-Young;Kim, Chang-Jin;Lyu, Jungmook;Choi, Eun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.293-300
    • /
    • 2015
  • Purpose: To evaluate blue light hazards of LED lightings in an optical store with blue light radiance used as the quantitative indicators of photobiological hazard. Methods: The spectral radiance of each LED lightings was measured, and blue-light radiance and the corresponding maximum exposure time were calculated. Then each LED lighting was classified according to the risk group from IEC 62471 standard. Results: The yellow LED lightings used in showcases and white LED lightings used on ceilings and logo were classified into risk group RG0. But the white LED lightings used on showcases were classified into risk group RG1. The blue light radiances of white LED lightings used in showcases are dozens of times larger than that of fluorescent lamp. Conclusions: Using the value of the blue light radiance could quantitatively express the blue light hazard to various lightings. It was confirmed that white LED lightings for the showcases had high blue light hazards because of their high luminance and color temperature. Therefore, when replacing lightings in optical shop it is necessary to select the appropriate brightness and color temperature for eye health in the long term.

Amorphous Indium-Tin-Zinc-Oxide (ITZO) Thin Film Transistors

  • Jo, Gwang-Min;Lee, Gi-Chang;Seong, Sang-Yun;Kim, Se-Yun;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.170-170
    • /
    • 2010
  • Thin-film transistors (TFT) have become the key components of electronic and optoelectronic devices. Most conventional thin-film field-effect transistors in display applications use an amorphous or polycrystal Si:H layer as the channel. This silicon layers are opaque in the visible range and severely restrict the amount of light detected by the observer due to its bandgap energy smaller than the visible light. Therefore, Si:H TFT devices reduce the efficiency of light transmittance and brightness. One method to increase the efficiency is to use the transparent oxides for the channel, electrode, and gate insulator. The development of transparent oxides for the components of thin-film field-effect transistors and the room-temperature fabrication with low voltage operations of the devices can offer the flexibility in designing the devices and contribute to the progress of next generation display technologies based on transparent displays and flexible displays. In this thesis, I report on the dc performance of transparent thin-film transistors using amorphous indium tin zinc oxides for an active layer. $SiO_2$ was employed as the gate dielectric oxide. The amorphous indium tin zinc oxides were deposited by RF magnetron sputtering. The carrier concentration of amorphous indium tin zinc oxides was controlled by oxygen pressure in the sputtering ambient. Devices are realized that display a threshold voltage of 4.17V and an on/off ration of ${\sim}10^9$ operated as an n-type enhancement mode with saturation mobility with $15.8\;cm^2/Vs$. In conclusion, the fabrication and characterization of thin-film transistors using amorphous indium tin zinc oxides for an active layer were reported. The devices were fabricated at room temperature by RF magnetron sputtering. The operation of the devices was an n-type enhancement mode with good saturation characteristics.

  • PDF

Characteristics and Application of PLT Thin-Films Deposited on ITO Substrate (ITO 기판위에 증착시킨 PLT 박막의 특성 및 그 응용)

  • Bae, Seung-Choon;Park, Sung-Kun;Choi, Byung-Jin;Kim, Ki-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.423-429
    • /
    • 1997
  • We fabricated PLT thin films on ITO substrate for flat pannel display and investigated the characteristics, then we applicated to electroluminescent device and investigated application possibility. When we fabricated PLT thin films with substrate temperature of $500^{\circ}C$, and pressure of 30 mTorr, the relative deielectric constant and breakdown electricfield of PLT thin films were 120 and 3.2MV/cm. The electric resistivity was $2.0{\times}10^{12}{\Omega}{\cdot}cm$. PLT thin films had polycrystal structure of perovskite and pyrochlore at the higher substrate temperature than $450^{\circ}C$, and had good crystallinity at higher pressure. To use PLT insulator film and ZnS:Mn phosphor, we fabricated thin film electroluminescent device of ITO/PLT/ZnS:Mn/PLT/Al structure. At the result, threshold voltage was $35.2V_{rms}$ and brightness was $2400cd/m^{2}$ at $50V_{rms}$ and 1kHz. Maximum luminescence efficiency was 0.811m/W.

  • PDF

The Verification of Photoplethysmography Using Green Light that Influenced by Ambient Light (녹색광을 이용한 반사형 광용적맥파측정기의 주변광 간섭시 신호측정)

  • Chang, K.Y.;Ko, H.C.;Lee, J.J.;Yoon, Young Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.125-131
    • /
    • 2014
  • The purpose of this study is to verify the utility of reflected photoplethysmography sensor using two green light emitting diodes that influenced by ambient light. Recently it has been studied that green light emitting diode is suitable for light source of reflected photoplethysmography sensor at low temperature and high temperature. Another study showed that, green light is better for monitoring heart rate during motion than led light. However, it has a bad characteristic about ambient light noise. To verify the utility of reflected photoplethysmography sensor using green light emitting diode, this study measures the photoplethysmography signal that is distorted by ambient light and will propose a solution. This study has two parts of research method. One is measurement system that composed sensor and board. The sensor is made up PE-foam and Non-woven fabric for flexible sensor. The photoplethysmography signal is measured by measurement board that composed high-pass filter, low-pass filter and amplifier. Ambient light source is light bulb and white light emitting diode that has three steps brightness. Photoplethysmography signal is measured with lead II electrocardiography signal at the same time and it is measured at the finger and radial artery for 1 minute, 1000 Hz sampling rate. The lead II electrocardiography signal is a standard signal for heart rate and photoplethysmography signal that measured at the finger is a standard signal for waveform. The test is repeated 3 times using three sensor. The data is processed by MATLAB to verify the utility by comparing the correlation coefficient score and heart rate. The photoplethysmography sensor using two green light emitting diodes is shown better utility than using one green light emitting diode and red light emitting diode at the ambient light. The waveform and heart rate that measured by two green light emitting diodes are more identical than others. The amount of electricity used is less than red light emitting diode and error peak detectability factor is the lowest.

Relationship between Tropical Cyclone Intensity and Physical Parameters Derived from TRMM TMI Data Sets (TRMM TMI 관측과 태풍 강도와의 관련성)

  • Byon, Jae-Young
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.359-367
    • /
    • 2008
  • TRMM TMI data were used to investigate a relationship between physical parameters from microwave sensor and typhoon intensities from June to September, 2004. Several data such as 85GHz brightness temperature (TB), polarization corrected temperature (PCT), precipitable water, ice content, rain rate, and latent heat release retrieved from the TMI observation were correlated to the maximum wind speeds in the best-track database by RSMC-Tokyo. Correlation coefficient between TB and typhoon intensity was -0.2 - -0.4 with a maximum value in the 2.5 degree radius circle from the center of tropical cyclone. The value of correlation between in precipitable water, rain, latent heat, and typhoon intensity is in the range of 0.2-0.4. Correlation analysis with respect to storm intensity showed that maximum correlation is observed at 1.0-1.5 degree radius circle from the center of tropical cyclone in the initial stage of tropical cyclone, while maximum correlation is shown in 0.5 degree radius in typhoon stage. Correlation coefficient was used to produce regressed intensities and adopted for typhoon Rusa (2002) and Maemi (2003). Multiple regression with 85GHz TB and precipitable water was found to provide an improved typhoon intensity when taking into account the storm size. The results indicate that it may be possible to use TB and precipitable water from satellite observation as a predictor to estimate the intensity of a tropical cyclone.

Early Frost Damage and Diagnose of Damage Depth Due to Early Frost Damage of the Concrete According to the Thickness of Members (부재 두께 변화에 따른 콘크리트의 초기동해 특성 분석 및 깊이진단)

  • Kim, Tae-Woo;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • Recently, there are many structures exposed to severe outdoor environments, which results in rapid degradation of durability of the concrete structures. there can be rapid deterioration of the concrete structures from early frost damage due to the insufficient curing in low outdoor temperature condition. The objective of this study is to investigate the effect of thickness change conditions and binding material on early frost damage depth of the concrete exposed to cold weather in winter, and is to clearly assess damage depth of the concrete structure due to early frost damage. Specimens with 300x300x(150, 200, 250, 300mm) were prepared. OPC and OPC+FA+BS were adopted for binders. Test results indicate that the depth of the early frost damage was deeper with the decrease of thickness of members. The brightness of specimens were reduced when the member thickness was thinner. When determining the depth of early frost damage, it can be distinguished into dark color and relatively bright color when dried for approximately 30 minutes in the indoors of $20^{\circ}C$ in temperature and 60% in relative humidity after submerging in water for 24 hours. The dark colored part can be determined easily when measured with vernier calipers.

Tropospheric Ozone over the Seoul Metropolitan Area Derived from Satellite Observations (MODIS) and Numerical Simulation (위성관측(MODIS)에서 유도된 수도권 지역의 대류권 오존 및 수치실험)

  • Yoo Jung-Moon;Park Yoo-Min;Lee Suk-Jo
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.283-296
    • /
    • 2005
  • The effect of ozone and surface temperature on the ozone band at $9.7{\mu}m$ has been investigated from radiative transfer theory together with observations in order to derive empirical methods for remotely sensing ground-ozone concentration. Simultaneous observations of satellite (MODIS Aqua; ECT 13:30) and ground-ozone at 79 stations have been used over the Seoul Metropolitan Area (SMA; 125.7-127.2 E, 37.2-37.7 N) during four ozone-warning days in the year 2003. Cloud effect on the band in the methods was filtered out based on synoptic observations. Upwelling radiance values at $9.6{\mu}m$ which have been estimated at the given ozone concentration of 327-391 DU depend on surface temperature (Ts) showing $5.52\~5.78Wm^{-2}sr^{-1}\;at\;Ts = 290 K,\;and\;9.00\~9.57Wm^{-2}sr^{-1}$ Ts = 325K. Thus, the partitioned contributions of ozone and temperature to intensity of ozone absorption band are $0.26Wm^{-1}sr^{-1}/64\;DU\;and\;0.31 Wm^{-2}sr^{-1}/35K$, respectively. Here the intensity which has been used to remotely detect ground-ozone concentration from infrared satellite measurement is defined as the difference in brightness temperature between $11{\mu} m\;and\;9.7{\mu}m (i.e.,\; T_{11-9.7})$. The methods in this study have been applied to estimate ground-ozone from MODIS data in cases that there are significant correlations between the band intensity and ground-ozone. The values of estimated ozone significantly correlate (0.49-0.63) with ground observations at a significance level of $1\%$. For the improved methods, further study may be required to use tropospheric ozone rather than ground-ozone, considering the variation stratospheric ozone.

Temporal and Spatial Variability of the Middle and Lower Tropospheric Temperatures from MSU and ECMWF (MSU와 ECMWF에서 유도된 중간 및 하부 대류권 온도의 시 ${\cdot}$ 공간 변동)

  • Yoo, Jung-Moon;Lee, Eun-Joo
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.503-524
    • /
    • 2000
  • Intercomparisons between four kinds of data have been done to estimate the accuracy of satellite observations and model reanalysis for middle and lower tropospheric thermal state over regional oceans. The data include the Microwave Sounding Units (MSU) Channel 2 (Ch2) brightness temperatures of NOAA satellites and the vertically weighted corresponding temperature of ECMWF GCM (1980-93). The satellite data for midtropospheric temperatures are MSU2 (1980-98) in nadir direction and SC2 (1980-97) in multiple scans, and for lower tropospheric temperature SC2R (1980-97). MSU2 was derived in this study while SC2 and SC2R were described in Spencer and Christy (1992a, 1992b). Temporal correlations between the above data were high (r${\ge}$0.90) in the middle and high latitudes, but low(r${\sim}$0.65) over the low latitude and more convective regions. Their values with SC2R which included the noises due to hydrometeors and surface emission were conspicuously low. The reanalysis shows higher correlation with SC2 than with MSU2 partially because of the hydrometeors screening. SC2R in monthly climatological anomalies was more sensitive to surface thermal condition in northern hemisphere than MSU2 or SC2. The first EOF mode for the monthly mean data of MSU and ECMWF shows annual cycle over most regions except the tropics. The mode in MSU2 over the Pacific suggests the east-west dipole due to the Walker circulation, but this tendency is not clear in other data. In the first and second modes for the Ch2 anomalies over most regions, the MSU and ECMWF data commonly indicate interannual variability due to El Ni${\tilde{n}$o and La Ni${\tilde{n}$a. The substantial disagreement between observations and model reanalysis occurs over the equatorial upwelling region of the western Pacific, suggesting uncertainties in the model parameterization of atmosphere-ocean interaction.

  • PDF

Adaptive Color Correction Method to Monitor in Color Laser Printer (모니터에 적응적인 칼라 레이저 프린터의 색 변환 방법)

  • Jang, In-Su;Son, Chang-Hwan;Kim, Kyung-Man;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.63-68
    • /
    • 2010
  • The Color Management System in recent printers adopts ICC profiles for both monitors and printers. However, the ICC profile doesn't contain the characteristics of reproduced color on each monitor, because the color on each monitor is changed by user adjustment such as color temperature, brightness, and contrast adjustment. It is also depended on the backlight type and lifetime. As a result, unwanted color is reproduced on the printed paper, not like that on the monitor. To overcome the color difference between monitors and printers, it is needed to control the information of ICC profile. That is, first, the ICC profile is generated by the measurement of monitors having user set, then, through the CMS, the color on monitors can be produced on printed paper. However, it is difficult to apply the above system for normal users due to absence of measuring equipment and time consuming process. Therefore, this paper proposes a novel color matching technique based on the estimation of condition for each monitor having user set. The estimation is performed by a simple comparison visual test using a test image on printed paper and monitor. Then, the condition of monitor is applied to the ICC profile. As a result, the new ICC profile contains the color difference between user monitor and printer. The experimental results show the printed images using our proposed method have almost similar color with those on monitors.