• Title/Summary/Keyword: Brightness Transfer

Search Result 62, Processing Time 0.022 seconds

The Preparation of Phosphor Screen for Video Phone Tube by Screen Printing Method (Screen Printing법에 의한 Video Phone Tube용 형광막 제조)

  • Lee Mi-Young;Lee Jong-Wook;Kim Young-Bae;Nam Su-Yong;Lee Sang-Nam;Moon Myung-Jun
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.801-810
    • /
    • 2005
  • The phosphor and ITO(Indium Tin Oxide) films for video phone tube (VPT) were simply prepared by the screen printing and thermal transfer methods. The increasing order of thermal firing of acrylic binder for phosphor and ITO was M6003 < M6664 < A/A 1919 < M500l < M670 1 and all mass of binders were perfectly decomposed at lower temperature than $400^{\circ}C.$ After thermal firing of phosphor paste, the residual of binder on the surface of phosphor could not be found by SEM. Aerosil as thickner provides the thixotropy property for phosphor paste but decrease the brightness of phosphor screen as residual after thermal firing. Since the thixotropy of M5001 binder without aerosil was shown and the storage modulus of phosphor paste by increasing the angular frequency was not nearly changed and the decrease of the storage modulus of phosphor paste by increasing the strain was remarkably shown. It was possible to prepare the phosphor paste which was predominant in the plate separation and the reproduction of pattern after the screen printing. Since the addition of dispersing agent to improve the printing process decreases the electrical conductivity and light transmission of ITa film, it could be found to be necessary the development of binder for phosphor paste that decreases the amount of dispersing agent possibly and does not use the aerosil as additive.

A Study on the Characteristics of ITO Thin Film for Top Emission OLED (Top Emission OLED를 위한 ITO 박막 특성에 대한 연구)

  • Kim, Dong-Sup;Shin, Sang-Hoon;Cho, Min-Joo;Choi, Dong-Hoon;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.450-450
    • /
    • 2006
  • Organic light-emitting diodes (OLED) as pixels for flat panel displays are being actively pursued because of their relatively simple structure, high brightness, and self-emitting nature [1, 2]. The top-emitting diode structure is preferred because of their geometrical advantage allowing high pixel resolution [3]. To enhance the performance of TOLEDs, it is important to deposit transparent top cathode films, such as transparent conducting oxides (TCOs), which have high transparency as well as low resistance. In this work, we report on investigation of the characteristics of an indium tin oxide (ITO) cathode electrode, which was deposited on organic films by using a radio-frequency magnetron sputtering method, for use in top-emitting organic light emitting diodes (TOLED). The cathode electrode composed of a very thin layer of Mg-Ag and an overlaying ITO film. The Mg-Ag reduces the contact resistivity and plasma damage to the underlying organic layer during the ITO sputtering process. Transfer length method (TLM) patterns were defined by the standard shadow mask for measuring specific contact resistances. The spacing between the TLM pads varied from 30 to $75\;{\mu}m$. The electrical properties of ITO as a function of the deposition and annealing conditions were investigated. The surface roughness as a function of the plasma conditions was determined by Atomic Force Microscopes (AFM).

  • PDF

Examining Influences of Asian dust on SST Retrievals over the East Asian Sea Waters Using NOAA AVHRR Data (NOAA AVHRR 자료를 이용한 해수면온도 산출에 황사가 미치는 영향)

  • Chun, Hyoung-Wook;Sohn, Byung-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.45-59
    • /
    • 2009
  • This research presents the effect of Asian dust on the derived sea surface temperature (SST) from measurements of the Advanced Very High Resolution Radiometer (AVHRR) instrument flown onboard NOAA polar orbiting satellites. To analyze the effect, A VHRR infrared brightness temperature (TB) is estimated from simulated radiance calculated from radiative transfer model on various atmospheric conditions. Vertical profiles of temperature, pressure, and humidity from radiosonde observation are used to build up the East Asian atmospheric conditions in spring. Aerosol optical thickness (AOT) and size distribution are derived from skyradiation measurements to be used as inputs to the radiative transfer model. The simulation results show that single channel TB at window region is depressed under the Asian dust condition. The magnitude of depression is about 2K at nadir under moderate aerosol loading, but the magnitude reaches up to 4K at slant path. The dual channel difference (DCD) in spilt window region is also reduced under the Asian dust condition, but the reduction of DCD is much smaller than that shown in single channel TB simulation. Owing to the depression of TB, SST has cold bias. In addition, the effect of AOT on SST is amplified at large satellite zenith angle (SZA), resulting in high variance in derived SSTs. The SST depression due to the presence of Asian dust can be expressed as a linear function of AOT and SZA. On the basis of this relationship, the effect of Asian dust on the SST retrieval from the conventional daytime multi-channel SST algorithm can be derived as a function of AOT and SZA.

Estimating Stability Indices from the MODIS Infrared Measurements over the Korean Peninsula (MODIS 적외 자료를 이용한 한반도 지역의 대기 안정도 지수 산출)

  • Park, Sung-Hee;Chung, Eui-Seok;Koenig, Marianne;Sohn, B.J.
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.469-483
    • /
    • 2006
  • An algorithm was developed to estimate stability indices (SI) over the Korean peninsula using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) infrared brightness temperatures (TBs). The SI is defined as the stability of the atmosphere in the hydrostatic equilibrium with respect to the vertical displacements and is used as an index for the potential severe storm development. Using atmosphere temperature and moisture profiles from Regional Data Assimilation and Prediction System (RDAPS) as initial guess data for a nonlinear physical relaxation method, K index (KI), KO Index (KO), lifted index (LI), and maximum buoyancy (MB) were estimated. A fast radiative transfer model, RTTOV-7, is utilized for reducing the computational burden related to the physical relaxation method. The estimated TBs from the radiative transfer simulation are in good agreement with observed MODIS TBs. To test usefulness for the short-term forecast of severe storms, the algorithm is applied to the rapidly developed convective storms. Compared with the SIs from the RDAPS forecasts and NASA products, the MODIS SI obtained in this research predicts the instability better over the pre-convection areas. Thus, it is expected that the nowcasting and short-term forecast can be improved by utilizing the algorithms developed in this study.

Estimation of Oceanic Total Precipitable Water from HALE UAV (고고도 장기체공무인기 운영고도에서 해양 총가강수량 추정)

  • Cho, Young-Jun;Jang, Hyun-Sung;Ha, Jong-Chul;Choi, Reno K.Y.;Kim, Ki-Hoon;Lim, Eunha;Yun, Jong-Hwan;Lee, Jae-Il;Seong, Ji-In
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.359-370
    • /
    • 2017
  • In this study, the oceanic Total Precipitable Water (TPW) retrieval algorithm at 16 km altitude of High Altitude Long Endurance Unmanned Aerial Vehicle (HALE UAV) is described. Empirical equation based on Wentz method (1995) that uses the 18.7 and 22.235 GHz channels is developed using the simulated brightness temperature and SeeBor training dataset. To do radiative simulation, Satellite Data Simulator Unit (SDSU) Radiative Transfer Model (RTM) is used. The data of 60% (523) and 40% (349) in the SeeBor training dataset are used to develop and validate the TPW retrieval algorithm, respectively. The range of coefficients for the TPW retrieval at the altitude of 3~18 km with 3 km interval were 153.69~199.87 (${\alpha}$), 54.330~58.468 (${\beta}$), and 84.519~93.484 (${\gamma}$). The bias and RMSE at each altitude were found to be about $-0.81kg\;m^{-2}$ and $2.17kg\;m^{-2}$, respectively. Correlation coefficients were more than 0.9. Radiosonde observation has been generally operated over land. To validate the accuracy of the oceanic TPW retrieval algorithm, observation data from the Korea Meteorological Administration (KMA) Gisang 1 research vessel about six clear sky cases representing spring, autumn, and summer season is used. Difference between retrieved and observed TPW at 16 km altitude were in the range of $0.53{\sim}1.87kg\;m^{-2}$, which is reasonable for most applications. Difference in TPW between retrieval and observation at each altitude (3~15 km) is also presented. Differences of TPW at altitudes more than 6 km were $0.3{\sim}1.9kg\;m^{-2}$. Retrieved TPW at 3 km altitude was smaller than upper level with a difference of $-0.25{\sim}0.75kg\;m^{-2}$ compared to the observed TPW.

Improvement of COMS land surface temperature retrieval algorithm by considering diurnal variation of air temperature (기온의 일 변동을 고려한 COMS 지표면온도 산출 알고리즘 개선)

  • Choi, Youn-Young;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.435-452
    • /
    • 2016
  • Land Surface Temperature (LST) has been operationally retrieved from the Communication, Ocean, and Meteorological Satellite (COMS) data by the spilt-window method (CSW_v2.0) developed by Cho et al. (2015). Although the CSW_v2.0 retrieved the LST with a reasonable quality compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) LST data, it showed a relatively poor performance for the strong inversion and lapse rate conditions. To solve this problem, the LST retrieval algorithm (CSW_v2.0) was updated using the simulation results of radiative transfer model (MODTRAN 4.0) by considering the diurnal variations of air temperature. In general, the upgraded version, CSW_v3.0 showed a similar correlation coefficient between the prescribed LSTs and retrieved LSTs (0.99), the relatively smaller bias (from -0.03 K to-0.012 K) and the Root Mean Square Error (RMSE) (from 1.39 K to 1.138 K). Particularly, CSW_v3.0 improved the systematic problems of CSW_v2.0 that were encountered when temperature differences between LST and air temperature are very large and/or small (inversion layers and superadiabatic lapse rates), and when the brightness temperature differences and surface emissivity differences were large. The bias and RMSE of CSW_v2.0 were reduced by 10-30% in CSW_v3.0. The indirect validation results using the MODIS LST data showed that CSW_3.0 improved the retrieval accuracy of LST in terms of bias (from -0.629 K to -0.049 K) and RMSE (from 2.537 K to 2.502 K) compared to the CSW_v2.0.

D-$\Pi$-A designed dye chromophores and nanoparticles: optical properties, chemosensor effects and PE/Aramid fiber colorations

  • Son, Young-A;Kim, Su-Ho;Kim, Young-Sung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.40-40
    • /
    • 2010
  • Studies on attractive color changing property of dye chromophore and fluorophore have been greatly enjoyed in the related industrial and research fields such as optoelectronics, chemosensor, biosensor and so on. The optical property based on D-$\Pi$-A intramolecular charge transfer (ICT) system of chromophore molecules can be utilized as suitable sensing probes for checking media polarity and determining colorimetric chemosensing effect, especially heavy metal detection. These finding are obtained by absorption and emission properties. In this work, donor-acceptor D-$\Pi$-A type fluorescent dyes were designed and synthesized with the corresponding donor and acceptor groups. The selected donor moieties might be provided prominent amorphous properties which are very useful in designing and synthesizing functional polymers and in fabricating devices. Another reasons to choose are commercial availabilities in high purity and low price. Donor-bridge-acceptor (D-A) type dyes can produce impressive optical-physical properties, yielding them potentially suitable for applications in the synthesis of small functional organic molecules. Small organic functional molecules have unique advantages, such as better solubility, amorphous character, and represent an area of research which needs to be explored and developed. Currently, their applications in metalorganic compounds is rapidly expanding and becoming widespread in self-assembly processes, photoluminescence applications, chiral organocatalysts, and ingrafts with nanomaterials. Colloidal nanoparticles have received great attentions in recent years. The photophysical properties of nanoparticles, particularly in terms of brightness, photostability, emission color purity and broad adsorption range, are very attractive functions in many applications. To our knowledge background, colloidal nanoparticles have been enjoyed their applications in bio-probe research fields. This research interest can be raised by the advantages of the materials such as high photoluminescence quantum yields, sharp emission band, long-term photostability and broad excitation spectra. In recent, the uses of nanoparticles being embedded in a polymer matrix and binded on polymer surface have been explored and their properties such as photo-activation and strong photoluminescence have been proposed. The prepared chromophores and nanoparticles were investigated with absorption and emission properties, solvatochromic behaviors, pH induced color switching effects, chemosensing effects and HOMO/LUMO energy potentials with computer simulation. In addition, synthesized fluorophore dyes and particles were applied onto PE/Aramid fiber fluorescing colorations. And the related details were then discussed.

  • PDF

Estimation of Total Precipitable Water from MODIS Infrared Measurements over East Asia (MODIS 적외 자료를 이용한 동아시아 지역의 총가강수량 산출)

  • Park, Ho-Sun;Sohn, Byung-Ju;Chung, Eui-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.309-324
    • /
    • 2008
  • In this study the retrieval algorithms have been developed to retrieve total precipitable water (TPW) from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) infrared measurements using a physical iterative retrieval method and a split-window technique over East Asia. Retrieved results from these algorithms were validated against Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) over ocean and radiosonde observation over land and were analyzed for investigating the key factors affecting the accuracy of results and physical processes of retrieval methods. Atmospheric profiles from Regional Data Assimilation and Prediction System (RDAPS), which produces analysis and prediction field of atmospheric variables over East Asia, were used as first-guess profiles for the physical retrieval algorithm. We used RTTOV-7 radiative transfer model to calculate the upwelling radiance at the top of the atmosphere. For the split-window technique, regression coefficients were obtained by relating the calculated brightness temperature to the paired radiosonde-estimated TPW. Physically retrieved TPWs were validated against SSM/I and radiosonde observations for 14 cases in August and December 2004 and results showed that the physical method improves the accuracy of TPW with smaller bias in comparison to TPWs of RDAPS data, MODIS products, and TPWs from split-window technique. Although physical iterative retrieval can reduce the bias of first-guess profiles and bring in more accurate TPWs, the retrieved results show the dependency upon initial guess fields. It is thought that the dependency is due to the fact that the water vapor absorption channels used in this study may not reflect moisture features in particular near surface.

Bias Characteristics Analysis of Himawari-8/AHI Clear Sky Radiance Using KMA NWP Global Model (기상청 전구 수치예보모델을 활용한 Himawari-8/AHI 청천복사휘도 편차 특성 분석)

  • Kim, Boram;Shin, Inchul;Chung, Chu-Yong;Cheong, Seonghoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1101-1117
    • /
    • 2018
  • The clear sky radiance (CSR) is one of the baseline products of the Himawari-8 which was launched on October, 2014. The CSR contributes to numerical weather prediction (NWP) accuracy through the data assimilation; especially water vapor channel CSR has good impact on the forecast in high level atmosphere. The focus of this study is the quality analysis of the CSR of the Himawari-8 geostationary satellite. We used the operational CSR (or clear sky brightness temperature) products in JMA (Japan Meteorological Agency) as observation data; for a background field, we employed the CSR simulated using the Radiative Transfer for TOVS (RTTOV) with the atmospheric state from the global model of KMA (Korea Meteorological Administration). We investigated data characteristics and analyzed observation minus background statistics of each channel with respect to regional and seasonal variability. Overall results for the analysis period showed that the water vapor channels (6.2, 6.9, and $7.3{\mu}m$) had a positive mean bias where as the window channels(10.4, 11.2, and $12.4{\mu}m$) had a negative mean bias. The magnitude of biases and Uncertainty result varied with the regional and the seasonal conditions, thus these should be taken into account when using CSR data. This study is helpful for the pre-processing of Himawari-8/Advanced Himawari Imager (AHI) CSR data assimilation. Furthermore, this study also can contribute to preparing for the utilization of products from the Geo-Kompsat-2A (GK-2A), which will be launched in 2018 by the National Meteorological Satellite Center (NMSC) of KMA.

Change Attention-based Vehicle Scratch Detection System (변화 주목 기반 차량 흠집 탐지 시스템)

  • Lee, EunSeong;Lee, DongJun;Park, GunHee;Lee, Woo-Ju;Sim, Donggyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.228-239
    • /
    • 2022
  • In this paper, we propose an unmanned vehicle scratch detection deep learning model for car sharing services. Conventional scratch detection models consist of two steps: 1) a deep learning module for scratch detection of images before and after rental, 2) a manual matching process for finding newly generated scratches. In order to build a fully automatic scratch detection model, we propose a one-step unmanned scratch detection deep learning model. The proposed model is implemented by applying transfer learning and fine-tuning to the deep learning model that detects changes in satellite images. In the proposed car sharing service, specular reflection greatly affects the scratch detection performance since the brightness of the gloss-treated automobile surface is anisotropic and a non-expert user takes a picture with a general camera. In order to reduce detection errors caused by specular reflected light, we propose a preprocessing process for removing specular reflection components. For data taken by mobile phone cameras, the proposed system can provide high matching performance subjectively and objectively. The scores for change detection metrics such as precision, recall, F1, and kappa are 67.90%, 74.56%, 71.08%, and 70.18%, respectively.