• 제목/요약/키워드: Bridges to Practice

검색결과 101건 처리시간 0.029초

도로교 차량하중 및 통행특성에 관한 연구 (A Study on Bridge Live Loads and Traffic Modes)

  • 김상효;박흥석
    • 대한토목학회논문집
    • /
    • 제12권4호
    • /
    • pp.107-116
    • /
    • 1992
  • 도로교의 안전수준에 영향을 미치는 것은 주로 과적중차량이다. 계속 증가하는 과적중차량의 문제는 오래전 부터 매우 심각한 상태인 것으로 지적되어오고 있다. 따라서 여러나라에서 차량하중의 특성에 관한 연구가 활발히 이루어지고 있으며, 일부에서는 이러한 변화를 반영하기 위하여 도로교 설계활하중을 개선하였다. 본 연구에서는 차량하중 및 통행특성의 자료를 수집하여 차량형식, 차량총중량, 축중분배, 차종혼입율, 연행특성 등을 분석하고 합리적인 모형을 제시하였다. 또한 차량하중이 도로교에 미치는 하중효과를 교량형식에 따라 분석하여 현행 도로교 설계관련 규정들이 내포하고 있는 안전수준에 대한 분석을 실시하였다.

  • PDF

Effects of spatial variability of earthquake ground motion in cable-stayed bridges

  • Ferreira, Miguel P.;Negrao, Joao H.
    • Structural Engineering and Mechanics
    • /
    • 제23권3호
    • /
    • pp.233-247
    • /
    • 2006
  • Most codes of practice state that for large in-plane structures it is necessary to account for the spatial variability of earthquake ground motion. There are essentially three effects that contribute for this variation: (i) wave passage effect, due to finite propagation velocity; (ii) incoherence effect, due to differences in superposition of waves; and (iii) the local site amplification due to spatial variation in geological conditions. This paper discusses the procedures to be undertaken in the time domain analysis of a cable-stayed bridge under spatial variability of earthquake ground motion. The artificial synthesis of correlated displacements series that simulate the earthquake load is discussed first. Next, it is described the 3D model of the International Guadiana Bridge used for running tests with seismic analysis. A comparison of the effects produced by seismic waves with different apparent propagation velocities and different geological conditions is undertaken. The results in this study show that the differences between the analysis with and without spatial variability of earthquake ground motion can be important for some displacements and internal forces, especially those influenced by symmetric modes.

Best Practice on Inspecting the Abnormal State of Bridge (Engineering works) Establishment with Augmented Reality (AR) Mechanism

  • Janghwan Kim;So Young Moon;R. Young Chul Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권2호
    • /
    • pp.168-174
    • /
    • 2023
  • In the current world, with the massive scale of SOC construction, it is difficult to diagnose and check all of a bridge's abnormal states with even the experts' eyes for maintenance. It is because we should spend huge costs and time on maintenance. Still, there are not many alternative ways to inspect bridges remotely regarding accuracy or reality. Therefore, we remark on the advantages and disadvantages of previous methods through practices in SOC maintenance. To inspect the abnormal state of the Bridge, we suggest inspecting bridges with an Augmented Reality (AR) mechanism to reduce cost, human resource consumption, and the risk of work. Through the proposed approach, we expect that it provides ways to solve massive construction problems with software-based technologies.

T형 교각의 탄성변형을 고려한 슬래브교의 유한요소 해석 (Finite Element Analysis Reinforced Concrete Slab Bridge Considering Elastic deformations of Reinforced Concrete T-type Piers)

  • 이성철;윤동열
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.100-110
    • /
    • 2000
  • In practical design of girder bridges or reinforced concrete slab bridges with T-type piers, it is usually assumed that vertical movements of superstructures are completely restrained at the locations of bearings(shoes) on a cap beam of the pier, The resulting vertical reactions are applied to the bearing for the calculation of bending moments and shear forces in the cap beam. However, in reality, the overhang parts of the cap beam will deform under the dead load of superstructures and the live load so that it may act as an elastic foundation. Due to the settlement of the elastic foundation, the actual distribution of the reactions at the bearings along the cap beam may be different from that obtained under the assumption that the vertical movements are fixed at the bearings. In the present study, investigated is the effects of elastic deformations of the T-type pier on the distribution of reactions at the bearings along the cap beam through 3-dimensional finite element analysis. Herein, for this purpose the whole structural system including the superstructure and piers as well is analyzed. It appears that the conventional practice which neglects the elastic deformations of the cap beam exhibits considerably different distributions of the reactions as compared with those obtained from the present finite element analysis. It is, therefore, recommended that in order to assess the reactions at bearings correctly the whole structural system be analyzed using 3-dimensional finite element analysis.

  • PDF

진동특성치의 변화를 통한 교량의 손상발견 (Damage Detection in Highway Bridges Via Changes in Modal Parameters)

  • Kim, Jeong-Tae;Ryu, Yeon-Sun
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.87-94
    • /
    • 1995
  • In highway bridges robust damage detection exercises are mandatory to secure the safety of the structures from hostile environmental conditions such as fatigue earthquake, wind, and corrosion. This paper presents a damage detection practice in a full-scale highway bridge by utilizing modal response parameters of as-built and damaged states of the structure. first the test structure is described and modal testing procedures are outlined. Next, a damage detection model which yields information on the location of damage directly from changes in mode shapes is outlined. Finally, the damage detection model is implemented to predict the location of damage in the ten structure. From the results, it was found that the damage detection model accurately locates damage in the test structures for which modal parameters of only a single mode are available for pre-damage (as-built) and post-damage stages.

  • PDF

Neural network based numerical model updating and verification for a short span concrete culvert bridge by incorporating Monte Carlo simulations

  • Lin, S.T.K.;Lu, Y.;Alamdari, M.M.;Khoa, N.L.D.
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.293-303
    • /
    • 2022
  • As infrastructure ages and traffic load increases, serious public concerns have arisen for the well-being of bridges. The current health monitoring practice focuses on large-scale bridges rather than short span bridges. However, it is critical that more attention should be given to these behind-the-scene bridges. The relevant information about the construction methods and as-built properties are most likely missing. Additionally, since the condition of a bridge has unavoidably changed during service, due to weathering and deterioration, the material properties and boundary conditions would also have changed since its construction. Therefore, it is not appropriate to continue using the design values of the bridge parameters when undertaking any analysis to evaluate bridge performance. It is imperative to update the model, using finite element (FE) analysis to reflect the current structural condition. In this study, a FE model is established to simulate a concrete culvert bridge in New South Wales, Australia. That model, however, contains a number of parameter uncertainties that would compromise the accuracy of analytical results. The model is therefore updated with a neural network (NN) optimisation algorithm incorporating Monte Carlo (MC) simulation to minimise the uncertainties in parameters. The modal frequency and strain responses produced by the updated FE model are compared with the frequency and strain values on-site measured by sensors. The outcome indicates that the NN model updating incorporating MC simulation is a feasible and robust optimisation method for updating numerical models so as to minimise the difference between numerical models and their real-world counterparts.

Predicting the axial load capacity of high-strength concrete filled steel tubular columns

  • Aslani, Farhad;Uy, Brian;Tao, Zhong;Mashiri, Fidelis
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.967-993
    • /
    • 2015
  • The aim of this paper is to investigate the appropriateness of current codes of practice for predicting the axial load capacity of high-strength Concrete Filled Steel Tubular Columns (CFSTCs). Australian/New Zealand standards and other international codes of practice for composite bridges and buildings are currently being revised and will allow for the use of high-strength CFSTCs. It is therefore important to assess and modify the suitability of the section and ultimate buckling capacities models. For this purpose, available experimental results on high-strength composite columns have been assessed. The collected experimental results are compared with eight current codes of practice for rectangular CFSTCs and seven current codes of practice for circular CFSTCs. Furthermore, based on the statistical studies carried out, simplified relationships are developed to predict the section and ultimate buckling capacities of normal and high-strength short and slender rectangular and circular CFSTCs subjected to concentric loading.

Direct design of truss bridges using advanced analysis

  • Kim, S.E.
    • Structural Engineering and Mechanics
    • /
    • 제6권8호
    • /
    • pp.871-882
    • /
    • 1998
  • This paper presents a new design method of truss bridges using advanced analysis. In this approach, separate member capacity checks encompassed by the specification equations are not required because the stability of separate members and the structure as a whole can be treated rigorously for the determination of the maximum strength of the structures. The method is developed and refined by modifications to the conventional elastic-plastic hinge method. Verification studies are carried out by comparing with the plastic-zone solutions. The load-deflection behavior of the truss shows a good agreement between the plastic-zone analysis. A case study is provided for a truss bridge. Member sizes determined by the proposed method are compared with those determined by the conventional method. It is concluded that the proposed method is suitable for adoption in practice.

강거더 연속교에 대한 충격계수에 관한 실험적 연구 (Traffic Induced Dynamic Load Factors on Continuous Steel Girder Bridges Based on Field Testing)

  • 엄준식;최종대
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권6호
    • /
    • pp.70-76
    • /
    • 2013
  • 본 연구에서는 강거더 연속교에 대해 국내외 설계기준에 규정되어 있는 활하중으로 인한 충격계수를 실험을 통해 검증하였다. 대부분의 도로교의 설계기준에서는 도로교의 경우 충격계수를 약 0.3 정도의 값으로 규정하고 있으나, 연속교의 경우에는 명확한 규정 및 명시가 없는 상황이다. 그러므로 단순교에 적용되는 충격계수를 연속교에 동일하게 적용하는 것이 일반적이다. 이 연구에서는 현장실험을 통해 연속교의 충격계수가 단순교에 적용되는 경우와 같이 사용될 수 있는지를 검증하였다. 현장실험 결과 얻어진 충격계수는 2차선 교량에서 1대의 만재트럭이 통과했을 경우 가장 하중이 많이 작용한 거더에서 0.2 이내의 충격계수가 계측되었으며, 2개의 차선을 통시에 만재트럭이 통과한 경우 그 충격계수는 0.05 이내의 값을 얻었다.

Yaw wind effect on flutter instability of four typical bridge decks

  • Zhu, Le-Dong;Xu, You-Lin;Guo, Zhenshan;Chang, Guang-Zhao;Tan, Xiao
    • Wind and Structures
    • /
    • 제17권3호
    • /
    • pp.317-343
    • /
    • 2013
  • When evaluating flutter instability, it is often assumed that incident wind is normal to the longitudinal axis of a bridge and the flutter critical wind speed estimated from this direction is most unfavorable. However, the results obtained in this study via oblique sectional model tests of four typical types of bridge decks show that the lowest flutter critical wind speeds often occur in the yaw wind cases. The four types of bridge decks tested include a flat single-box deck, a flat ${\Pi}$-shaped thin-wall deck, a flat twin side-girder deck, and a truss-stiffened deck with and without a narrow central gap. The yaw wind effect could reduce the critical wind speed by about 6%, 2%, 8%, 7%, respectively, for the above four types of decks within a wind inclination angle range between $-3^{\circ}$ and $3^{\circ}$, and the yaw wind angles corresponding to the minimal critical wind speeds are between $4^{\circ}$ and $15^{\circ}$. It was also found that the flutter critical wind speed varies in an undulate manner with the increase of yaw angle, and the variation pattern is largely dependent on both deck shape and wind inclination angle. Therefore, the cosine rule based on the mean wind decomposition is generally inapplicable to the estimation of flutter critical wind speed of long-span bridges under skew winds. The unfavorable effect of yaw wind on the flutter instability of long-span bridges should be taken into consideration seriously in the future practice, especially for supper-long span bridges in strong wind regions.