• Title/Summary/Keyword: Bridges Management

Search Result 327, Processing Time 0.03 seconds

Ecological Landscape Evaluation for the Planning of River Rehabilitation: The Upper Areas at the Mangyeong River in Jeollabukdo, Korea (하천복원계획을 위한 생태경관 평가: 전북 만경강 상류지역을 사례로)

  • Lee, Myung-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.4 s.117
    • /
    • pp.69-83
    • /
    • 2006
  • Nature rehabilitation has become a major theme in river management in South Korea. An analysis and evaluation of the landscape is a crucial step to select the suitable tracts for developing or conserving land use in the process of landscape planning. The purpose of this paper is to establish a hierarchical procedure for the setting of the landscape units on the various scales at which field biologists performed their observations and to select the preserves through by a suitability model for synthesizing the ecological empirical, and biophysical data. An evaluation process needs to be performed according to the landscape scales: site, local, and regional scales, at which the environmental data were collected, analyzed, and synthesized. Introducing of three level scales was crucially necessary for evaluating the various multi level ecological data for zoning of preserves in river corridors. The evaluation level at different scales are hierarchically established into three phases. The first evaluation phase can be performed by the long length units defined by the ranges of stream widths at regional scale. Secondly, each of these long units can be divided into two or more segments according to its landscape homogeneity at local level. Finally the segments at the last phase can be designated according to the location of the reservoir weirs and bridges at site level. The conceptual model components are adopted for collecting, evaluating, and interpreting the biological and abiotic data at site level. Three preserves are selected, having high potentials for being intensely managed as the Ecological Education Areas in the river. Despite a lot of assumption the results are expected to facilitate discussion and decision making about which frameworks of evaluation are desirable and adaptable for integrating the ecological data into the rehabilitation design process in South Korea.

Applications of Improved Low-Flow Mortar Type Grouting Method for Road Safety and Constructability in Dangerous Steep Slopes (급경사지 붕괴 위험지역의 도로 안전 및 시공성을 고려한 개선된 저유동 몰탈형 그라우팅공법 적용성 분석)

  • Choi, Gisung;Kim, Seokhyun;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.409-415
    • /
    • 2020
  • Low-flow mortar injection method grouting technology was selected and the traffic area was preserved as much as possible in order to secure safety for road traffic when the outflow and subsidence of landfill occurred due to ground-water, and etc. In particular, the current existing method was newly improved since there are risks of damage such as hydraulic fracturing at the lower part of the road, spilling of soil particles on steep slopes, and bumps on the road due to excessive injection pressure during construction. This study was carried out at the site of reinforcement work on the road as a maintenance work for the danger zone for collapse of the steep slope of the 00 hill, which was ordered from the 00 city 00 province. The improved low-flow mortar type grouting method adopted a new automated grouting management system and especially, it composites the method for grouting conditions decision by high-pressure pre-grouting test and injection technology by AGS-controlled and studied about grouting effect analysis by using new technology. By applying the improved low-flow mortar type grouting method, it was possible to lay the groundwork for road maintenance work such as the prevention of subsidence of old roads, uneven subsidence of buildings and civil engineering structures, and of soil leakage of ground-water spills. Furthermore, the possibility of application on future grouting work not only for just construction that prevents subsidence of old roads but also for various buildings and civil engineering structures such as railroads, subways, bridges, underground structures, and boulder stone and limestone areas was confirmed.

Non-stationary Frequency Analysis with Climate Variability using Conditional Generalized Extreme Value Distribution (기후변동을 고려한 조건부 GEV 분포를 이용한 비정상성 빈도분석)

  • Kim, Byung-Sik;Lee, Jung-Ki;Kim, Hung-Soo;Lee, Jin-Won
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.499-514
    • /
    • 2011
  • An underlying assumption of traditional hydrologic frequency analysis is that climate, and hence the frequency of hydrologic events, is stationary, or unchanging over time. Under stationary conditions, the distribution of the variable of interest is invariant to temporal translation. Water resources infrastructure planning and design, such as dams, levees, canals, bridges, and culverts, relies on an understanding of past conditions and projection of future conditions. But, Water managers have always known our world is inherently non-stationary, and they routinely deal with this in management and planning. The aim of this paper is to give a brief introduction to non-stationary extreme value analysis methods. In this paper, a non-stationary hydrologic frequency analysis approach is introduced in order to determine probability rainfall consider changing climate. The non-stationary statistical approach is based on the conditional Generalized Extreme Value(GEV) distribution and Maximum Likelihood parameter estimation. This method are applied to the annual maximum 24 hours-rainfall. The results show that the non-stationary GEV approach is suitable for determining probability rainfall for changing climate, sucha sa trend, Moreover, Non-stationary frequency analyzed using SOI(Southern Oscillation Index) of ENSO(El Nino Southern Oscillation).

Introduction to Maritime Safety Audit(MSA) and it's Guidelines (해상교통안전진단제도 및 기술기준 소개)

  • Cho, Ik-Soon;Lee, Sang-Jin;Kim, In-Chul;Hwang, Eui-Seon;Lim, Kwang-Tae
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2009.06a
    • /
    • pp.79-84
    • /
    • 2009
  • Recently, the degree of navigating vessel's risk is increasing significantly by growing of vessel's volume and increasing of marine facilities, marine bridges and port development etc. As a result, Ministry of Land, Transport and Maritime Affairs generalized formal Maritime Safety Audit as a comprehensive maritime traffic safety management system in order to ensure safety improvements from the planing to maintaining of the development which influence to maritime traffic environment. A MSA is a formal safety performance examination of an existing or future fairway by an audit team. It qualitatively estimates and reports on potential risk of Maritime traffic safety and identifies the measure for improving in safety of human life and preservation of environment. This paper introduced the outline of MSA policy as the guideline for making audit reports is on its developing which is mainly processed by Maritime Safety Research Center, KST in cooperation with KMU, MMU and KORDI.

  • PDF

A Study on the Effects of Factors of Traffic Accidents Caused by Frozen Urban Road Surfaces in the Winter (겨울철 도시부 노면결빙사고 발생에 미치는 요소에 관한 연구)

  • Kim, Sangyoup;Jang, Youngsoo;Kim, Sungkyu;Min, Dongchan;Na, Hohyuk;Choi, Jaisung
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.79-87
    • /
    • 2015
  • PURPOSES: According to accident statistics for road built in 2004, the ratio of accidents on frozen roads to normal roads is 0.9%, whereas the fatality ratio is 2.7%. The risk of accidents on frozen roads is very high. Measures taken every year to prevent traffic accidents of frozen roads in the winter season are still insufficient. Additionally, measures have been established mainly on rural roads. Therefore, for urban roads, analyses and measures to prevent accidents are lacking. In this study, data on accidents on frozen roads was used to search for the causes behind these accidents and measures to reduce accidents have been recommended. METHODS: In this study, collected data from the TAMS (Traffic Accident Management System), which were collected by the Seoul National Police Agency was used. The data were divided into vehicle, people, and condition of road. The analytical model used here was the Logistic Regression Model, which is frequently used for traffic safety and accident analysis. This study uses the odds ratio analysis to search for variables related to frozen road traffic accidents in each category. A total of 18 out of 47 variables were found to be the causes of accidents. RESULTS: From the results of the comparative analysis of 18 variables, the category of the condition of the road was found to be the most critical. Contrary to expectations, more accidents occurred in clear weather than in other conditions. Accidents on bridges occurred frequently, and its odds ratio was the highest compared with other road types. When BPT is operated, the probability of accidents on frozen roads is lower than in general conditions, and accidents occurred frequently on roads with less than four lanes. CONCLUSIONS : Based on the results of this study, suggestions for reducing the risk of future domestic road accidents in freezing conditions are indicated as follows. First, it is necessary to perform a technical review of the urban road traffic accidents caused by frozen roads. Second, it is necessary to establish criteria for the study of the road environment based on the major causes of road accidents on frozen roads. Third, improvements in urban road environmental factors should be made.

A Strategy for Developing New Road Projects (경관도로 등 신개념의 도로사업 개발에 관한 연구)

  • Kim, Eung-Cheol
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.115-127
    • /
    • 2007
  • Developed countries, especially in road construction and management fields, introduce new road porjects such as National Scenic Byways Program(NSBP program) in USA and the Eco-road project in Japan. This study develops a conceptual model for deploying new road projects in Korea. The four step approach is suggested to create new road projects, including foundation of an act based on the existing Road Act, creation of new road project ideas, development of evaluation process and guidelines, and enhancement of an administrative scheme. To create new road projects, three different ways are devised; (1) designation of national roads having uniqueness in overall spectrum, (2) designation of roads having intrinsic values in a different aspect, (3) designation of single structures of engineering outcomes such as bridges, tunnels, new design techniques, considerable Value Engineering output, and well analyzed Life Cycle Cost Analysis practices. For the evaluation process, NSBP program of USA and/or Sustainable City Award program of Korea would be recommended. An administrative scheme and integrated funding process for the new road projects are also suggested based on evaluation of tasks of each team or division of Korea Ministry of Construction and Transportation.

  • PDF

A Study on the Risk of Lightning in Special Structures and its Verification Method (특수 구조물의 낙뢰 위험도와 검증 방안에 관한 연구)

  • Yoo, Jeong Hyun;Kim, Hei Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.664-668
    • /
    • 2018
  • Free-standing structures that are especially high are more likely to receive brain attacks caused by lightning. Since special structures are generally part of national industrial structures, lightning strikes mostly cause socio-economic damage. Lightning protection facilities are installed to prevent such lightning damage, but in 2015, support cables on West Sea bridges were hit by lightning, causing a lot of economic damage. Accordingly, the design of a lightning protection system shall establish protective measures after analyzing the risk of debris falling onto the structure. In this thesis, lightning strikes are analyzed directly in relation to the modeling system that operates the actual information collection system for lightning strikes, depending on the location of the tall, free-standing structures, and practical lightning hazard information is provided by a meteorological station. In addition, we propose monitoring and applying a probability correction rate to the calculation of the lightning risk based on the number of lightning strikes directly reaching the ground in order to obtain an effective lightning risk assessment.

Development of Artificial Neural Network Model for Estimation of Cable Tension of Cable-Stayed Bridge (사장교 케이블의 장력 추정을 위한 인공신경망 모델 개발)

  • Kim, Ki-Jung;Park, Yoo-Sin;Park, Sung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.414-419
    • /
    • 2020
  • An artificial intelligence-based cable tension estimation model was developed to expand the utilization of data obtained from cable accelerometers of cable-stayed bridges. The model was based on an algorithm for selecting the natural frequency in the tension estimation process based on the vibration method and an applied artificial neural network (ANN). The training data of the ANN was composed after converting the cable acceleration data into the frequency, and machine learning was carried out using the characteristics with a pattern on the natural frequency. When developing the training data, the frequencies with various amplitudes can be used to represent the frequencies of multiple shapes to improve the selection performance for natural frequencies. The performance of the model was estimated by comparing it with the control criteria of the tension estimated by an expert. As a result of the verification using 139 frequencies obtained from the cable accelerometer as the input, the natural frequency was determined to be similar to the real criteria and the estimated tension of the cable by the natural frequency was 96.4% of the criteria.

Application of Total Station for Structure and Terrain Displacement Monitoring (구조물 및 지형변위 모니터링을 위한 토털스테이션의 활용)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.582-587
    • /
    • 2020
  • Recently, disasters caused by extreme weather and the damage caused by them are increasing worldwide. The interest in disasters, such as earthquakes, typhoons, and ground subsidence, is increasing in Korea. Korea has enacted a special law based on disaster management, and has built monitoring systems for individual facility units by building precision sensors and related systems to measure the displacement status of long bridges and high-rise composite buildings. On the other hand, the application of a real-time monitoring system is insufficient for slopes, open-pit mines, small and medium structures due to weather, measurement methods, cost, and constant monitoring difficulties. In this study, the displacement monitoring method using the total station was studied and the applicability was suggested through the experiment. Through the research, the concept and operation flow of a monitoring system that can measure the displacement of the terrain or the structure using the total station was presented. The monitoring system allows the user to select the location and operation method of the equipment so that the equipment can be installed according to the site situation, and set the number of observations, the period, and the observation range of the object. Using the experiment on the monitoring system, the station was monitored with precision within 5mm, and it was suggested that the displacement of the object can be monitored using the total station. Further research will be needed to assess the applicability of monitoring to real slopes and structures.

Estimation of Road-Network Performance and Resilience According to the Strength of a Disaster (재난 강도에 따른 도로 네트워크의 성능 및 회복력 산정 방안)

  • Jung, Hoyong;Choi, Seunghyun;Do, Myungsik
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • PURPOSES : This study examines the performance changes of road networks according to the strength of a disaster, and proposes a method for estimating the quantitative resilience according to the road-network performance changes and damage scale. This study also selected high-influence road sections, according to disasters targeting the road network, and aimed to analyze their hazard resilience from the network aspect through a scenario analysis of the damage recovery after a disaster occurred. METHODS : The analysis was conducted targeting Sejong City in South Korea. The disaster situation was set up using the TransCAD and VISSIM traffic-simulation software. First, the study analyzed how road-network damage changed the user's travel pattern and travel time, and how it affected the complete network. Secondly, the functional aspects of the road networks were analyzed using quantitative resilience. Finally, based on the road-network performance change and resilience, priority-management road sections were selected. RESULTS : According to the analysis results, when a road section has relatively low connectivity and low traffic, its effect on the complete network is insignificant. Moreover, certain road sections with relatively high importance can suffer a performance loss from major damage, for e.g., sections where bridges, tunnels, or underground roads are located, roads where no bypasses exist or they exist far from the concerned road, including entrances and exits to suburban areas. Relatively important roads have the potential to significantly degrade the network performance when a disaster occurs. Because of the high risk of delays or isolation, they may lead to secondary damage. Thus, it is necessary to manage the roads to maintain their performance. CONCLUSIONS : As a baseline study to establish measures for traffic prevention, this study considered the performance of a road network, selected high-influence road sections within the road network, and analyzed the quantitative resilience of the road network according to scenarios. The road users' passage-pattern changes were analyzed through simulation analysis using the User Equilibrium model. Based on the analysis results, the resilience in each scenario was examined and compared. Sections where a road's performance loss had a significant influence on the network were targeted. The study results were judged to become basic research data for establishing response plans to restore the original functions and performance of the destroyed and damage road networks, and for selecting maintenance priorities.