• Title/Summary/Keyword: Bridges Effect

Search Result 784, Processing Time 0.036 seconds

The nose-up effect in twin-box bridge deck flutter: Experimental observations and theoretical model

  • Ronne, Maja;Larsen, Allan;Walther, Jens H.
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.293-308
    • /
    • 2021
  • For the past three decades a significant amount of research has been conducted on bridge flutter. Wind tunnel tests for a 2000 m class twin-box suspension bridge have revealed that a twin-box deck carrying 4 m tall 50% open area ratio wind screens at the deck edges achieved higher critical wind speeds for onset of flutter than a similar deck without wind screens. A result at odds with the well-known behavior for the mono-box deck. The wind tunnel tests also revealed that the critical flutter wind speed increased if the bridge deck assumed a nose-up twist relative to horizontal when exposed to high wind speeds - a phenomenon termed the "nose-up" effect. Static wind tunnel tests of this twin-box cross section revealed a positive moment coefficient at 0° angle of attack as well as a positive moment slope, ensuring that the elastically supported deck would always meet the mean wind flow at ever increasing mean angles of attack for increasing wind speeds. The aerodynamic action of the wind screens on the twin-box bridge girder is believed to create the observed nose-up aerodynamic moment at 0° angle of attack. The present paper reviews the findings of the wind tunnel tests with a view to gain physical insight into the "nose-up" effect and to establish a theoretical model based on numerical simulations allowing flutter predictions for the twin-box bridge girder.

A study for CWR on Steel Plate Girder Railway Bridge without Ballast (무도상 교량 특성을 고려한 장대화 방안에 관한 연구)

  • Min Kyung-Joo;Nam Bo-Hyun;Ban Geol yeong
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.706-711
    • /
    • 2005
  • From the using CWR (Continuously Welded Rail) on steel plate girder bridges without ballast, axial forces are occurred from a temperature on CWR and girders. Because of the additional axial forces, studies in order to CWR and developments of devices are proceeding. The track system of steel plate girder bridges is poor. When CWR is used for the system, the resistance on sleepers is increased from a temperature. So it is increasing an effect on CWR and, for solving the effect, longitudinal forces for buckle are being decreased. It is possible that opposite cases can be happened and it is also compared and studied. Therefore, we present a reasonable model for analyzing CWR within the property of steel plate girder railway bridges in Korea. Furthermore, the results analyzed for stability is compared and evaluated with tests. Finally, a reasonable method for the installation of CWR on bridges without ballast is suggested.

  • PDF

Construction Stage Analysis of Extradosed PSC Box Bridges (Extradosed PSC Box 교의 시공단계해석)

  • 윤군진;이완수;이종신;김성찬
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.347-354
    • /
    • 2001
  • Extradosed PSC Box bridges, newly emerging type of structures in construction market, have a characteristic in that external tendons are used for strengthening PSC Box girder like stay cables in cable stayed bridges. In this study, a series of constructions stage analysis procedure, including initial shape analysis, backward analysis and forward analysis, have been performed in order to investigate long-term behavior of extradosed PSC box bridges, using PCCAP-a computer program for time-dependent stage analysis of PSC cable stayed bridges. CEB-FIP 1978 model was used for the consideration of time-dependent effect of concrete material. Showing the validity of the analysis results with RM SPACE FRAME, it has been confirmd that time-dependent effects become less consequential as the stiffness of girder becomes larger.

  • PDF

Design and Fabrication of an Electrostatic Microplate Resonator (정전형 미소 평판 공진자의 설계 및 제작)

  • Jeong, Ok-Chan;Yang, Sang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.494-502
    • /
    • 1999
  • This paper represents an electrostatic micro plate resonator which consists of a rigid plate suspended with four bridges and a counter electrode. The bridges of the resonator are designed corrugated so that the residual stress are released. The FEM simulation results confirmed that the deflection characteristic of the corrugated bridge is hardly affected by the initial residual tensile stress. One resonator with the corrugated bridges and the other with the flat bridges were fabricated by the boron diffusion process and the anisotropic etch process. The vertical deflection of the fabricated electrostatic resonator was measured with a laser vibrometer, and the data were compared with the calculation results. The deflection of the resonator with the flat bridges is smaller than the deflection of that with the corrugated ones because of the residual stress. The residual stress release effect was confirmed by the fact that the measured deflection of the resonator with the corrugated bridges in close to the calculated deflection of the resonator with the flat ones with the initial stress neglected.

  • PDF

Life-Cycle Cost Optimization for Steel Box Girder Bridges (강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성;정기영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.128-136
    • /
    • 2001
  • This paper presents an optimum deck and girder system design for minimizing the life-cycle cost (LU) of steel box girder bridges. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost, expected retrofit costs for strength, deflection, and crack. To demonstrate the effect of LCC optimum design of steel box girder bridges, the LCC optimum design is compared with conventional design method for steel box girder bridges design. From the numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on LCC will lead to more rational, economical and safer design.

  • PDF

Structural behavior of non-symmetrical steel cable-stayed bridges

  • Jorquera-Lucerga, Juan J.;Lozano-Galant, Jose A.;Turmo, Jose
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.447-468
    • /
    • 2016
  • Despite of the growing number of built examples, the analysis of non-symmetrical cable-stayed bridges has not received considerable attention from the researchers. In fact, the effects of the main design parameters in the structural behavior of these bridges are not addressed in detail in the literature. To fill this gap, this paper studies the structural response of a number of non-symmetrical cable-stayed bridges. With this aim, a parametric analysis is performed to evaluate the effect of each of the main design parameters (the ratio between the main and the back span length, the pylon, the deck and backstay stiffnesses, the pylon inclination, and the stay configuration) of this kind of bridges. Furthermore, the role of the geometrical nonlinearity and the steel consumption in stays are evaluated.

Optimum design of steel bridges including corrosion effect using TLBO

  • Artar, Musa;Catar, Recep;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.607-615
    • /
    • 2017
  • This study presents optimum design of plane steel bridges considering corrosion effect by using teaching-learning based optimization (TLBO) method. Optimum solutions of three different bridge problems are linearly carried out including and excluding corrosion effect. The member cross sections are selected from a pre-specified list of 128 W profiles taken from American Institute of Steel Construction (AISC). A computer program is coded in MATLAB to carry out optimum design interacting with SAP2000 using OAPI (Open Application Programming Interface). The stress constraints are incorporated as indicated in AISC Allowable Stress Design (ASD) specifications and also displacement constraints are applied in optimum design. The results obtained from analysis show that the corrosion effect on steel profile surfaces causes a crucial increase on the minimum steel weight of bridges. Moreover, the results show that the method proposed is applicable and robust to reach the destination even for complex problems.

An Analysis of Night and Day Images of Bridges Over the Han River in Seoul (서울시 한강교량 주야간 경관이미지 분석)

  • 서주환;최현상;차정우
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.5
    • /
    • pp.31-38
    • /
    • 2002
  • This study attempts to grasp the correlation between the image of bridges and bridge landscapes with their surroundings during day and nighttime viewing, and to understand the psychological influence of nighttime lighting through quantitative analysis. In addition, it presents a design to construct bridges in order to increase viewers enjoyment of bridge landscapes lit at night. To attain this objective and contrive generalization of the results, this paper selects 8 of 9 bridges with lightings in Seoul and excludes bridges constructed by 2004. The criteria for selection of the viewpoints is that each must be within easy reach of bridges, and must allow viewers to recognize surrounding landscape details both in daylight and at night. As well, the pictures of bridges are taken in the terraced land by the riverside. The study selects 16 pictures, judged to be of similar quality and angle, to establish the conditions of luminosity, color, definition and angle. The results are as follows. First, viewers preferences of night landscapes are higher than day landscapes due to the effect of lighting. By day, viewers preferred bridges with various structures such as cable-stayed bridges and arch bridges more than simple bridges like girder bridges. Viewers also indicated preferences for lightings which feature a unique color and which are harmonized with their surroundings. Second, components representing the images of bridge landscape are classified into three types, 'beauty', 'system' and 'agreeableness'. Third, the factors affecting preference are the shape of bridge by day and lighting at night. Esthetic appeal is the most important factor in visual preference so each bridges own esthetic appeal and surroundings must be considered. Thus, a complete plan must be created which considers safety, beauty and the local surroundings. In addition, when the lighting of a bridge is selected, the design of the bridge landscape must consider various lighting schemes to harmonize the upper and lower parts of the structure. At this point, the study reveals the basic elements of bridge planning in order to increase appreciation of the bridge landscape.

The Effect of Secondary Members on the Behavior of Steel-Concrete Composite Two-Girder Railway Bridges (2거더 강-콘크리트 합성형 철도교의 거동에 대한 2차부재의 영향 평가)

  • Bae Doo-byong;Cho Joon-hee
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.41-50
    • /
    • 2005
  • Steel -Concrete Composite two girder railway bridges applying high performance steel with extra thick plate have economic and aesthetic advantages due to the simplification of manufacturing and construction process. However, steel bridges are seldom adopted in domestic railway bridge, since steel bridges are not efficient as R.C bridges considering dynamic characteristics and noise, etc. While highway bridges do not have lower horizontal bracing and larger interval of diaphragm cross beam, railway bridges install lower horizontal bracings to control the torsion due to heavy eccentrical line load. Accurate finite element analysis were performed with the parameters of existence of bracing and bracing shape, with the cross beam interval and stiffness, etc. To find out the effects of secondary members such as horizontal bracings and diaphragms, static md dynamic analysis have been performed by using finite element method. In this study, few member plate-girder bridges are analyzed with variable span lengths to examine the dynamic behavior and limits of damping. And though lateral bracings are members against torsion, but lateral bracing's absence is no big problem. Time history analysis using mode superposition method makes proof of this result.

Response of Skew Bridges with permutations of geometric parameters and bearings articulation

  • Fakhry, Mina F.;ElSayed, Mostafa M.;Mehanny, Sameh S.F.
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.477-487
    • /
    • 2019
  • Understanding the behavior of skew bridges under the action of earthquakes is quite challenging due to the combined transverse and longitudinal responses even under unidirectional hit. The main goal of this research is to assess the response of skew bridges when subjected to longitudinal and transversal earthquake loading. The effect of skew on the response considering two- and three- span bridges with skew angles varying from 0 to 60 degrees is illustrated. Various pier fixities (and hence stiffness) and cross-section shapes, as well as different abutment's bearing articulations, are also studied. Finite-element models are established for modal and seismic analyses. Around 900 models are analyzed under the action of the code design response spectrum. $Vis-{\grave{a}}-vis$ modal properties, the higher the skew angle, the less the fundamental period. In addition, it is found that bridges with skew angles less than 30 degrees can be treated as straight bridges for the purpose of calculating modal mass participation factors. Other monitored results are bearings' reactions at abutments, shear and torsion demand in piers, as well as deck longitudinal displacement. Unlike straight bridges, it has been typically noted that skew bridges experience non-negligible torsion and bi-directional pier base shears. In a complementary effort to assess the accuracy of the conducted response spectrum analysis, a series of time-history analyses are applied under seven actual earthquake records scaled to match the code design response spectrum and critical comparisons are performed.