• Title/Summary/Keyword: Bridge specimen

Search Result 193, Processing Time 0.024 seconds

Stud and Puzzle-Strip Shear Connector for Composite Beam of UHPC Deck and Inverted-T Steel Girder (초고성능 콘크리트 바닥판과 역T형 강거더의 합성보를 위한 스터드 및 퍼즐스트립 전단연결재에 관한 연구)

  • Lee, Kyoung-Chan;Joh, Changbin;Choi, Eun-Suk;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • Since recently developed Ultra-High-Performance-Concrete (UHPC) provides very high strength, stiffness, and durability, many studies have been made on the application of the UHPC to bridge decks. Due to high strength and stiffness of UHPC bridge deck, the structural contribution of top flange of steel girder composite to UHPC deck would be much lower than that of conventional concrete deck. At this point of view, this study proposes a inverted-T shaped steel girder composite to UHPC deck. This girder requires a new type of shear connector because conventional shear connectors are welded on top flange. This study also proposes three different types of shear connectors, and evaluate their ultimate strength via push-out static test. The first one is a stud shear connector welded directly to the web of the girder in the transverse direction. The second one is a puzzle-strip type shear connector developed by the European Commission, and the last one is the combination of the stud and the puzzle-strip shear connectors. Experimental results showed that the ultimate strength of the transverse stud was 26% larger than that given in the AASHTO LRFD Bridge Design Specifications, but a splitting crack observed in the UHPC deck was so severe that another measure needs to be developed to prevent the splitting crack. The ultimate strength of the puzzle-strip specimen was 40% larger than that evaluated by the equation of European Commission. The specimens combined with stud and puzzle-strip shear connectors provided less strength than arithmetical sum of those. Based on the experimental observations, there appears to be no advantage of combining transverse stud and puzzle-strip shear connectors.

Seismic Performance Evaluation of SRC Column by Quasi-Static Test (준정적 실험에 의한 SRC 합성교각의 내진성능 평가)

  • Han, Jung-Hoon;Park, Chang-Kyu;Shim, Chang-Su;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.85-94
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is the most important factor. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcements such as hoop ties closely. Using core steel composite columns is useful as one of the reinforcing RC columns. In this paper, quasi-static tests on concrete encased composite columns with single core steel or multiple steel elements were performed to investigate the seismic performance of the composite columns. Eight concrete-encased composite specimens were fabricated. The cross-sections of these specimens are composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcements, type and number of encased steel member. Through the tests, it was evaluated the ductility of SRC composite specimens. It has become clear from the test results that encased steel elements makes the deformation capacity of the columns to be larger. The displacement ductility and lateral strength of specimen with concrete-encased circular tube were indicated the biggest value.

A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks

  • Shemirani, Alireza Bagher;Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi;Hosseini, Seyed shahin
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.189-197
    • /
    • 2018
  • A discrete element approach is used to investigate the effects of confining stress on the shear behaviour of joint's bridge area. A punch-through shear test is used to model the concrete cracks under different shear and confining stresses. Assuming a plane strain condition, special rectangular models are prepared with dimension of $75mm{\times}100mm$. Within the specimen model and near its four corners, four equally spaced vertical notches of the same depths are provided so that the central portion of the model remains intact. The lengths of notches are 35 mm. and these models are sequentially subjected to different confining pressures ranging from 2.5 to 15 MPa. The axial load is applied to the punch through the central portion of the model. This testing and models show that the failure process is mostly governed by the confining pressure. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced shear bands which are increased by increasing the confining pressure while the cracks propagation lengths are decreased. The failure stress and the crack initiation stress both are increased due to confining pressure increase. As a whole, the mechanisms of brittle shear failure changes to that of the progressive failure by increasing the confining pressure.

Mechanical properties of carbon fiber sheet and carbon fiber strand sheet based on carbon fibers for the reinforcement of highway bridge RC slabs (도로교 RC 상판 보강을 위한 탄소섬유 기초 carbon fiber sheet와 carbon fiber strand sheet의 역학특성)

  • Won, Chan Ho;Abe, Tadashi;Ahn, Tae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.290-293
    • /
    • 2015
  • Recently, a lot of interest has been shown in structural maintenance managements of civil infrastructures. Many researchers have been conducted on various maintenance techniques and repair materials. Among other fiber materials the carbon fiber materials are especially focused on maintenance management of Highway Bridges. Extensive work has been done on Carbon Fiber Sheet (CFS). Nevertheless, Carbon Fiber Strand Sheet (CFSS) is a newly developed material, on which limited work has been done until now. Therefore, in this study bonding the CFSS to RC slab specimen and fatigue resistance evaluation has been conducted. The results demonstrated an increase of 25.3 times more reinforcement of RC slab compared to non-reinforced RC slab. Moreover, compared to CFS-bonded RC slab, The CFSS-bonded RC slab showed 1.2 times greater reinforcement.

An Experimental Study on the Structural Performance of Horizontally Curved Precast PSC Girder (프리캐스트 곡선 PSC 거더의 구조 성능에 관한 실험연구)

  • Lee, Doo Sung;Choi, Woo Suk;Kim, Tae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.747-757
    • /
    • 2015
  • The main purpose of this study is to investigate the static behavior of a horizontally curved prestressed concrete (PSC) girder. A 30m long full-scale curved PSC girder with 80.0m radius is fabricated by a portable curved form system. Deflections and concrete strains at the middle of span were measured. The obtained experimental results have been compared to those from F.E.A. analysis. When a initial crack developed, the applied load was 1.3 times the service design load and the vertical deflection at the middle of span satisfied the requirement for a live load state according to the Korea Bridge Design Specifications (2010). Also, the ductility of the full scale specimen satisfied the limit in the Specifications (2010). To verify the experimental results, a numerical F.E. analysis was carried and confirmed that the data were similar with results from the test above. The horizontally curved PSC girder fabricated on site was found to have enough strength for safety under and after construction.

A Basic Study on the Crack Arrest Phenomena (균열정지현상에 관한 기초적 연구)

  • 이억섭;김상철;송정일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.112-118
    • /
    • 1990
  • Catastrophic fracture cannot be avoided after cracks(initiated from pre-existing defects) propagate rapidly with speeds comparable to a sound wave velocity of the materials. Preventing catastropic failure, crack arrest fracture toughness defined from dynamic(or kinetic) fracture mechanics point of view has been introduced in determining accurate and/or proper crack arrest fracture toughness of a material. For the past decades, many studies have been carried out to render proper theoretical and experimental backgrounds on the use of the static plain strain crack arrest fracture toughness, $K_{1a}$ (which seems to be a material property). $K_{1a}$ has been used to predict the performance of thick walled structures and has been considered as a measure of the ability of a material to stop a fast running crack. Determination of such a material property is of prime importance to the nuclear reactor pressure vessel and bridge materials industries. However, standards procedures for measuring toughness associated with fast running cracks are yet to exist. This study intends to give insight on the determination of the crack arrest fracture toughness of materials such as polymethylmethacrylate(PMMA), SM45C-steel, and A1 7075-T6. The effects of crack jump lengths and fast crack initiation stress intensity factor on the determination of $K_{1a}$ have been experimentally observed.erved.

An experimental study on the fretting fatigue crack behaviour of A12024-T4 (A12024-T4의 프레팅 피로균열거동에 관한 실험적 연구)

  • Lee, Bong-Hun;Lee, Sun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.511-518
    • /
    • 1997
  • The technique of fretting fatigue test was developed and fretting fatigue tests of A12024-T4 were conducted under several conditions. The newly developed calibration methods for measuring surface contact tractions showed good linearity and repeatability. The plate type specimen to which tow bridge type pads were attached and vision system was used to observe the crack behaviour. The oblieque cracks appeared in the early stage of crack growth and they became mode I cracks as they grow about 1 mm. The mode I transition points were found to be longer when surface tractions are higher or bulk stress is lower. Before the crack becomes mode I crack, 'well point' where crack grow about rate is minimum, was detected under every experimental condition. The crack behaviour was found to be affected by surface tractions, contact area, bulk stress. It was also found that partial slip and stick condition is most detrimental and the crack starts from the boundary of stick and slip. For gross slip crack started at the outside edge of pad. After crack mode transition, fretting fatigue cracks showed almost same behaviour of plain mode I fatigue cracks. Equivalent stress intensity factor was used to analyze the behaviour of fretting fatigue cracks and it was found that stress intensity factors can be applied to fretting fatigue cracks.

The Fatigue Strength of Steel Bridge Components Attached with Non-load Carrying Out-of Plane Gusset Plate (하중 비전달형 면외 거셋판이 부착된 강교량 부재의 피로강도)

  • Woo, Sang Ik;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.779-788
    • /
    • 1998
  • This paper presents the results of the experimental and analytical investigation for the fatigue strength of welded details frequently used in steel bridges, especially for the details with relatively lower fatigue strength. Considering the measured stress fatigue cracking initiated at toe of the transverse fillet weld joining the gusset plates to the web because of the stress concentration that developed as a result of the geometric conditions and the greater probability of microscopic discontinuities at the fillet weld toe A comparison was made of the stress calculated by considering geometric aspect of bead and measured at same position. They indicate that the geometric conditions of the weld toe result in similar stress concentration on both FEM models and test results. The test results were compared with the fatigue criteria of AASHTO, JSSC specifications. Specimens of 80 and 150mm gusset plate configuration tested either respectively equaled or exceeded the fatigue resistance provided by category D and E of the AASHTO specification. It also satisfied the category F and G of JSSC. Both WG1 and WG3 specimen tend to provide S-N curves with a store near -0.3 less than AASHTO and JSSC.

  • PDF

AN EXPERIMENTAL STUDY ON THE EFFECTS OF DOG'S PULPAL HEALING AFTER COBALT-60 IRRADIATION (성견에 있어서 Cobalt-60 조사가 치수치유과정에 미치는 영향에 관한 연구)

  • Park, Dong-Soo
    • Restorative Dentistry and Endodontics
    • /
    • v.9 no.1
    • /
    • pp.15-24
    • /
    • 1983
  • Irradiation is frequently employed as the sole therapy for oral cancer. These irradiated patients presents peculiar and progressive dental problems. But there is only scanty informations concerning specific approaches to endodontic treatment for head and neck cancer patients who have been subjected to tumorcidal doses of radiation therapy. The purpose of the present study was to determine the effects of cobalt-60 radiation on the pulpal healing of dogs after the direct pulp capping. As the experimental animals, 10 dogs (above 7-8 months after birth) were divided into 3 groups (Control, Group I, Group II). The cobalt-60 was irradiated to the Group I and Group II each 1,009 and 1,562.5 rads as single dose. As the capping material Dycal$^{(R)}$(L.D. Caulk company) was selected. After the direct pulp capping the dogs were sacrified 1, 2, 3, 4, week interval and made the original slides cut with a thickness of 8 microns and stained with hematoxylin and eosin. After examination and comparision of all specimen, the results of this study were drawn as follows; 1. The formation of reparative dentin was observed from the 1st week in the Control group, the 2nd week in the Group I & II. The few and irregular tuble structure was appeared in the 4th week in the Control group only, but failed in the Group I & II. 2. The continuity of dentin bridge was appeared in the 3rd week in all group and the degeneration of odontoblast in the 1st week of the Group II. 3. The congestion and hemorrhage in the pulp tissue were observed in all groups until 3rd week. The inflammation was appeared within the 2nd week in the Group I and especially marked in the Group II, but absent in the Control group. 4. In cases Dycal into the pulp tissue deeply, the local necrosis of pulp and decrease of dentin formation was observed.

  • PDF

Behaviour of Lightweight Concrete Slab Reinforced with GFRP Bars under Concentrated Load (집중하중을 받는 GFRP 보강근 경량콘크리트 슬래브의 거동)

  • Son, Byung-Lak;Kim, Chung-Ho;Jang, Heui-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • This paper is a preliminary study to apply the lightweight concrete slabs reinforced with GFRP (glass fiber reinforced polymer) bars to the bridge deck slabs or some other concrete structures. So, some different behaviors between the conventional steel reinforced concrete slab and the lightweight concrete slab reinforced with GFRP bars were investigated. For this purpose, a number of slabs were constructed and then the three point bending test and numerical analysis for these slabs were performed. The flexural test results showed that the lightweight concrete slabs reinforced with GFRP bars were failed by the shear failure due to the over-reinforced design. The weight and failure load of the GFRP bar reinforced lightweight concrete slabs were 72% and 58% of the steel reinforced concrete slab with the same dimensions, respectively. Results of the numerical analysis for these slabs using a commercial program, midas FEA, showed that the load-deflection curve could be simulated well until the shear failure of the slabs, but the applied loads and the deflections continuously increased even beyond the shear failure loads.