• Title/Summary/Keyword: Bridge rectifier

Search Result 292, Processing Time 0.023 seconds

Characteristic Analysis of Two-Phase SRM with Single Diode Bridge Rectifier (단상 다이오드 브리지 정류기를 갖는 2상 SRM 특성해석)

  • Lee, Chan-Gyo;Oh, Ju-Hwan;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.89-91
    • /
    • 2005
  • In This paper the convertor topology using single diode bridge rectifier for the now two-phase switched reluctance motor is proposed. The single diode bridge rectifier is supplied by the Ac voltage source. The nonlinear model of two-phase SRM is implement by maxwell and result show the photographic.

  • PDF

A CMOS Bridge Rectifier for HF and Microwave RFID Systems

  • Park Kwangmin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.237-240
    • /
    • 2004
  • In this paper, a CMOS bridge rectifier for HF and microwave RFID systems is presented. The proposed RFID CMOS bridge rectifier is designed with two NMOSs and two PMOSs whose gates are connected to the antenna, and it is operated as a full wave bridge rectifier. The simulation results obtained with SPICE show the well rectified and high enough DC output voltages for the operating frequencies of 13.56 MHz, 915 MHz, and 2.45 GHz which are used in various RFID systems. The obtained DC output voltages are sufficiently high for driving the low power microchip in RFID transponder for the frequency range of HF and microwave.

A CMOS Complementary Bridge Rectifier for Driving RFID Transponder Chips

  • Park, Kwang-Min
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.103-107
    • /
    • 2006
  • In this paper, a CMOS complementary bridge rectifier for driving RFID transponder chips is presented. The proposed RFID CMOS complementary bridge rectifier is designed with two NMOSs at the input, which are configured by cross-connected gate structures, and two PMOSs and two NMOSs at the output, which are configured by diode-connected MOS structures. Output characteristics of the proposed rectifier are analyzed with the high frequency small-signal equivalent circuit and verified with SPICE for RFID operating frequencies of 13.56 MHz HF for ISO 18000-3, 915MHz UHF for ISO 18000-6, and 2.45 GHz microwave for ISO 18000-4. Simulation results show well-rectified and high enough DC output voltages for driving the low power microchip in the RFID transponder for the frequency range from HF to microwave. DC output voltages are dropped by only around 0.7 V from the input peak-to-peak voltages.

A Study on the Synchronous Rectifier Driver Circuits in the LLC Resonant Half-Bridge Converter (LLC 공진형 하프브릿지 컨버터의 동기정류기 구동회로에 관한 연구)

  • Ahn, Tae-Young;Im, Bum-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.79-86
    • /
    • 2016
  • In this paper, we propose a current-driven synchronous rectifier driver circuit for LLC resonant half-bridge converters. The proposed driver circuit detects a relatively low current in the primary side of the transformer although a large current is flowing in the secondary side. Due to this feature, the driver circuit has a simple circuit structure and stabilizes the switching operation with a logic-level switching voltages for the synchronous rectifier. The operation and performance of the proposed driver circuit are confirmed with a prototype of 1kW class LLC resonant half-bridge converter. The experimental results proved that the proposed synchronous rectifier driver method improves the power conversion efficiency by around 1% and reduces the internal power loss by 17W.

A Phase-Shifted Full-Bridge Converter With a New Rectifier Circuit for Reducing Circuiting Current (순환전류 감소를 위한 새로운 정류회로를 갖는 위상천이 풀브리지 컨버터)

  • Choi, Byoung-Gi;Lee, Woo-seok;Lee, Il-Oun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.237-240
    • /
    • 2021
  • This research proposes a new rectifier circuit to reduce the circulating current of a phase-shifted full bridge converter. The proposed circuit is a structure in which the output inductor of the secondary rectifier circuit is changed to a coupled inductor in the phase-shifted full bridge with the existing center-tapped rectifier. The parts are rearranged after adding a diode. After applying the proposed circuit, the circulating current to the primary current of the transformer and the voltage stress of the rectifier diode on the secondary side of the transformer are reduced. Accordingly, the snubber loss of the rectifier is improved. By reducing the circulating current and snubber loss, the circuit achieves higher efficiency than conventional circuits. In this research, we present the structure of the proposed circuit, its strengths, and the analysis results from experiments. Furthermore, its effectiveness is verified through the experimental results of a prototype converter with an input of 300-400 V and an output of 50 V/1 kW.

High Efficiency Half-bridge DC-DC Converter for an LED Backlight Drive System of LCD Module Inspection Equipment (LCD 모듈 검사장비용 LED 백라이트 드라이브 시스템을 위한 고효율 반브리지 직류-직류 전력변환기)

  • Yoo, Doo-Hee;Jeong, Gang-Youl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.535-542
    • /
    • 2008
  • This paper presents a high efficiency half-bridge DC-DC converter for an LED backlight drive system of LCD module inspection equipment. The proposed converter improves the converter efficiency using characteristics of the asymmetrical half-bridge converter and the self-driven synchronous rectifier, and thus improves the total efficiency of the LED backlight drive system. The synchronous rectifier applied to the proposed converter is the new topological synchronous rectifier, which changes slightly the transformer structure and the synchronous switch connection in the asymmetrical half-bridge converter with a conventional self-driven synchronous rectifier. Since the proposed converter utilizes the transformer leakage inductor as its resonant inductor, its structure is simplified. The proposed converter well operates under the universal DC input voltage ($250{\sim}380V$). The operational principle and a design example for a 100W prototype are discussed in detail, respectively. Experimental results are shown for the designed prototype converter under universal DC input voltage.

A study on the efficiency characteristics for LLC resonant half-bridge converter with synchronous rectifier (동기정류기를 적용한 공진형 하프브릿지의 효율특성에 관한연구)

  • Lee, Gwang-Taek;Ahn, Tae-Young
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.289-291
    • /
    • 2005
  • In this paper results of the experiment which used LLC resonant half bridge DC-DC converter to a portable electrical equipment. LLC resonance Half Bridge DC-DC converter which was used in this experiment improved an efficiency because it reduced switching, conduction losses and with synchronous rectifier. As a result of the experiment, this proposed converter could verified an increase of 2% to the efficiency more than diode rectifier.

  • PDF

LLC resonant half-bridge DC-DC converter with synchronous rectifier (동기정류기를 적용한 LLC 공진형 하프브릿지 DC-DC 컨버터)

  • Lee, Gwang-Taek;Ahn, Tae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1392-1394
    • /
    • 2005
  • In this paper results of the experiment which used LLC resonant Half Bridge DC-DC converter to a portable electrical equipment. LLC resonant Half Bridge DC-DC converter which was used in this experiment improved an efficiency because it reduced switching, conduction losses and with synchronous rectifier. As a result of the experiment, this proposed converter could verified an increase of 2% to the efficiency more than diode rectifier.

  • PDF

High-Efficiency Full-Bridge DC-DC Converter with Current-Doubler Rectifier with Asymmetric Pulse-Width Modulation (비대칭 펄스 폭 변조 방식의 배전류 정류기 회로를 적용한 고효율 풀-브릿지 DC-DC 컨버터)

  • Yang, Min-Kwon;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.280-289
    • /
    • 2015
  • A high-efficiency full-bridge DC-DC converter with a current-doubler rectifier and an asymmetric pulse-width modulation is proposed. Through the asymmetric pulse-width modulation, the proposed converter achieves zero-voltage switching of power switches without the circulating currents. The proposed converter reduces the output current ripple through the current-doubler rectifier. A control strategy is suggested for the proposed converter to charge battery banks. A constant current and constant voltage charging is performed. The proposed converter achieved a higher efficiency compared with the conventional full-bridge DC-DC converter with a phase-shift modulation. The performance of the proposed converter is evaluated by the experimental results for a 1.0 kW prototype circuit.

Techniques to Diagnose Short-Circuit Faults in the Switching Mode Power Supply for Display (디스플레이용 스위칭모드 전원장치의 단락 고장분석 검출기법)

  • Lee, Jae-Won;Chun, Tae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1186-1192
    • /
    • 2016
  • This paper proposes techniques to diagnose short-circuit faults of both the diodes and power FET in switching mode power supply (SMPS) by using a simple analog tester. The diodes in full-bridge rectifier, power FET, switching transformer, and some sensors are modelled with resistor. The total resistance value measured at the input terminal of a SMPS is analyzed when the short-circuit faults of diodes in a full bridge rectifier or power FET are occurred. The short-circuit faults of one or two diodes in a full bridge rectifier, power FET, and both the diodes in a full bridge rectifier and power FET can be detected by a range of total resistance, which is measured by the analog tester. Through experiments, the theoretical analysis for total resistance under short-circuit faults can be verified.