• 제목/요약/키워드: Bridge piers

검색결과 476건 처리시간 0.025초

역량스펙트럼 및 에너지분석을 이용한 RC교각의 내진성능평가에 관한 연구 (Seismic Performance Evaluation of RC Bridge Piers using Capacity Spectrum and Energy Analysis)

  • 정영수;박종협
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.361-367
    • /
    • 2001
  • This research aims at evaluating the seismic performance of the R/C bridge piers, which were seismically designed in accordance with the seismic provision of limited ductile behavior of Eurocode 8. Pseudo dynamic test for six(6) circular RC bridge piers has been carried out so at to investigate their seismic performance subjected to experted artificial earthquake motions. The objective of this experimental study is to investigate the hysteretic behavior of reinforced concrete bridge piers. Important test parameters are confinement steel ratio, input ground motion, etc. The seismic behavior of circular concrete piers under artificial ground motions has been evaluated through displacement ductility, energy analysis, capacity spectrum. It can be concluded that RC bridge piers designed in the seismic code of limited ductile behavior of Eurocode 8 have been determined to show good seismic performance even under expected artificial earthquakes in moderate seismicity region.

  • PDF

Study on seismic strengthening of railway bridge pier with CFRP and concrete jackets

  • Ding, Mingbo;Chen, Xingchong;Zhang, Xiyin;Liu, Zhengnan;Lu, Jinghua
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.275-283
    • /
    • 2018
  • Seismic strengthening is essential for existing bridge piers which are deficient to resist the earthquake. The concrete and CFRP jackets with a bottom-anchoring method are used to strengthen railway bridge piers with low reinforcement ratio. Quasi-static tests of scaled down model piers are performed to evaluate the seismic performance of the original and strengthened bridge pier. The fracture characteristics indicate that the vulnerable position of the railway bridge pier with low reinforcement ratio during earthquake is the pier-footing region and shows flexural failure mode. The force-displacement relationships show that the two strengthening techniques using CFRP and concrete jackets can both provide a significant improvement in load-carrying capacity for railway bridge piers with low reinforcement ratio. It is clear that the bottom-anchoring method by using planted steel bars can guarantee the CFRP and concrete jackets to work jointly with original concrete piers Furthermore, it can be found that the use of CFRP jacket offers advantages over concrete jacket in improving the energy dissipation capacity under lateral cyclic loading. Therefore, the seismic strengthening techniques by the use of CFRP and concrete jackets provide alternative choices for the large numbers of existing railway bridge piers with low reinforcement ratio in China.

내진 모사하중에 의한 스테인레스강 와이어 보강 교각의 응답 (Response of Bridge Piers Retrofitted by Stainless Steel Wire under Simulated Seismic Loading)

  • 최준혁;김성훈;이도형
    • 한국강구조학회 논문집
    • /
    • 제21권4호
    • /
    • pp.343-350
    • /
    • 2009
  • 본 연구에서는, 비내진 설계된 철근콘크리트 교각에 대해 스테인레스강 와이어 메쉬와 고강도 침투성 폴리머 몰탈을 사용한 내진보강 기법을 제안하였다. 본 연구의 목적을 위해, 총 6본의 비내진 설계된 교각 실험체에 대해 반복 가력 실험을 수행하였다. 실험결과, 주철근 겹이음을 갖는 비내진 설계된 교각 실험체에 대한 내진보강이 필요하다는 것을 알 수 있었고, 본 연구에서 제안된 보강 기법은, 비내진 설계된 교각의 강도, 강성 및 에너지 소산능력에 증진 효과가 있음을 알 수 있었다. 또한, 제안된 보강 기법은 비탄성 변위 영역을 경험하는 교각의 강도 저감 완화와 함께 연성도 증진에도 효과가 있을 것으로 기대된다.

Performance of R/C Bridge Piers under Seismic Loads

  • Kang, Hong-Duk;Kang, Young-Jong;Yoon, Young-Soo
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.35-46
    • /
    • 2000
  • A research program was initiated at the University of Colorado at Boulder to develop computational models that can be used for seismic risk assessments. To assess the overall performance of bridge structures including the nonlinear effects of bridge piers, the research focused on two levels of capabilities, i.e. global and local pier levels. A 3-D concrete model was used to evaluate the behavior of individual piers under combined axial, bending, and shear loadings using 3-D finite element analysis. Whereby the response curve reached the peak strength of the R/C column under the constant axial and monotonically increasing lateral loads. Experimental results on reinforced concrete bridge piers, which were obtained at the University of California at San Diego were used to validate the seismic performance of bridge piers at the two levels, globa1 and local.

  • PDF

Seismic performance assessment of R.C. bridge piers designed with the Algerian seismic bridges regulation

  • Kehila, Fouad;Kibboua, Abderrahmane;Bechtoula, Hakim;Remki, Mustapha
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.701-713
    • /
    • 2018
  • Many bridges in Algeria were constructed without taking into account the seismic effect in the design. The implantation of a new regulation code RPOA-2008 requires a higher reinforcement ratio than with the seismic coefficient method, which is a common feature of the existing bridges. For better perception of the performance bridge piers and evaluation of the risk assessment of existing bridges, fragility analysis is an interesting tool to assess the vulnerability study of these structures. This paper presents a comparative performance of bridge piers designed with the seismic coefficient method and the new RPOA-2008. The performances of the designed bridge piers are assessed using thirty ground motion records and incremental dynamic analysis. Fragility curves for the bridge piers are plotted using probabilistic seismic demand model to perform the seismic vulnerability analysis. The impact of changing the reinforcement strength on the seismic behavior of the designed bridge piers is checked by fragility analysis. The fragility results reveal that the probability of damage with the RPOA-2008 is less and perform well comparing to the conventional design pier.

유리섬유 보강 원형 철근콘크리트 교각의 내진성능에 관한 준정적 실험연구 (Quasi-Static Test for Seismic Performance of Circular R.C. Bridge Piers Before and After Retrofitting)

  • 정영수;이강균;한기훈;이대형
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.107-118
    • /
    • 1999
  • 10 RC bridge piers have been made on a 1/3.4 scale model, and six piers of them were retrofitted with glassfiber. The have been tested in the quasi-static cyclic load so as to investigate their seismic enhancement before and after retrofitting with glassfibers. The objective of this experimental study is to investigate how to strength the ductility of reinforced concrete bridge piers which have been nonseismically designed and constructed in Korea before 1992. Important test parameters are axial load, load pattern, retrofit type. Glassfiber sheets were used for retrofitting in the plastic hinge region of concrete piers. The nonlinear behavior of bridge columns have been evaluated through their yield and ultimate strength, energy dissipation, displacement ductility and load-deflection characteristics under quasi-static cyclic loads. It can be concluded from the test that concrete piers strengthened with glassfibers have been enhanced for their ductile behavior by approximate 50%.

철근 콘크리트 교각의 주철근 이음방법에 따른 내진성능 평가 (Evaluation of Seismic Performance for RC Bridge Piers According to Longitudinal Steel Connection Method)

  • 박진영;정영수;박창규;김영섭;이대형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.323-328
    • /
    • 2002
  • The 1995 devastating Hyogoken-Nambu earthquake sent mental shock waves that awakened the public concern about the seismic performance of infrastructures in Korea. Seismic safety of reinforced concrete bridge piers could be secured through sufficient strength and stiffness of longitudinal steels and confined core concrete, and through ductile behaviour of bridge piers in the inelastic range. This study has been performed to verify the effect of lap spliced longitudinal steel for the seismic behavior of reinforced concrete bridge piers. Quasi-static test has been done to investigate the physical seismic performance of RC bridge piers, such as displacement ductility, energy absorption etc.

  • PDF

고강도 원형나선철근기둥의 내진성능에 관한 연구 (A Study on Seismic Capacity of Circular Spiral Reinforced Concrete Bridge Piers used in High Strength Concrete)

  • 김광수;김민구;배성용;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.547-552
    • /
    • 2001
  • This research was conducted to investigate the seismic behavior and capacity assessment of circular spiral reinforcement concrete bridge piers used in high strength concrete. The displacement ductility, response modification factor(R), effective stiffness and plastic hinge region etc. was used to assess the seismic behavior and capacity of circular spiral reinforcement concrete bridge piers. The experimental variables of bridge piers test consisted of amount and spacing, different axial load levels. From the quasi-static tests on 9 bridge piers and analysis, it is found that current seismic design code specification of transverse confinement steel requirements and details may be revised.

  • PDF

Seismic performances of steel reinforced concrete bridge piers

  • Deng, Jiangdong;Liu, Airong;Yu, Qicai;Peng, Guoxing
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.661-677
    • /
    • 2016
  • The quasi static test of the steel reinforced concrete (SRC) bridge piers and rigid frame arch bridge structure with SRC piers was conducted in the laboratory, and the seismic performance of SRC piers was compared with that of reinforced concrete (RC) bridge piers. In the test, the failure process, the failure mechanism, hysteretic curves, skeleton curves, ductility coefficient, stiffness degradation curves and the energy dissipation curves were analyzed. According to the $M-{\Phi}$ relationship of fiber section, the three-wire type theoretical skeleton curve of the lateral force and the pier top displacement was proposed, and the theoretical skeleton curves are well consistent with the experimental curves. Based on the theoretical model, the effects of the concrete strength, axial compression ratio, slenderness ratio, reinforcement ratio, and the stiffness ratio of arch to pier on the skeleton curve were analyzed.

철근콘크리트 교각의 연성과 손상도 평가 (Evaluation of Ductility and Damage Ratio for Reinforced Concrete Bridge Piers)

  • 박창규;이대형;이은희;김훈;정영수
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.197-204
    • /
    • 2002
  • The resent earthquakes in worldwide have caused extensive damage to highway reinforced concrete bridge piers. It has been observed in the Korean Peninsula that the number of minor or low earthquake motions have increased year by year. Since the concern about the earthquake hazards is increased, the objective of this research is to evaluate the damage of reinforced concrete bridge piers subjected to probable earthquake motions. Experimental investigation was conducted to study the seismic performance of the full-scale specimens in size D=1.2m H=4.8m, which were constructed with different longitudinal lap splice and loading pattern, through the quasi-static test and the pseudo-dynamic test. It is thought that this result could contribute to establish the retrofit decision-making and disaster planning of reinforced concrete bridge piers in earthquake regions. And it could be also possible to quantify the damage of reinforced concrete bridge piers under cyclic loading

  • PDF