• Title/Summary/Keyword: Bridge motion

Search Result 385, Processing Time 0.032 seconds

A GIS-Based Regional Risk Analysis Approach for Bridges (GSIS를 이용한 교량의 안전관리시스템 구축)

  • Kim, Seong-Hun
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 1994.11a
    • /
    • pp.32-42
    • /
    • 1994
  • A GIS-based regional risk analysis program to interactively study the vulnerability of bridges in a regional highway network is described. The analysis utilizes three major components. The use of a GIS system as the integrating environment to display geographic data, to handle inquiries and to display the results of a query. A risk model for bridges which can predict the level of damage due to a particular intensity of ground motion at a bridge site. A ground motion attenuation model to predict the intensity of ground motion at a particular bridge. The interactive components are supported by data files which encode characteristics such as potential earthquake sources and magnitudes, and characteristics of the bridges which are important for damage and failure analysis.

  • PDF

Effects of the yaw angle on the aerodynamic behaviour of the Messina multi-box girder deck section

  • Diana, G.;Resta, F.;Zasso, A.;Belloli, M.;Rocchi, D.
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.41-54
    • /
    • 2004
  • An analysis refinement of the Messina Strait suspension bridge project has been recently required, concerning mainly the yaw angle effects on the multi-box deck section aerodynamics and the vortex shedding at low reduced velocities $V^*$. In particular the possible interaction of the axial flow with the large cross beams has been investigated. An original test rig has been designed at this purpose allowing for both forced motion and free motion aero elastic tests, varying the average angle of attack ${\alpha}$ and the deck yaw angle ${\beta}$. The hydraulic driven test rig allowed for both dynamic and stationary tests so that both the stationary coefficients and the flutter derivatives have been evaluated for each yaw angle. Specific free motion tests, taking advantage from the aeroelastic features of the section model, allowed also the study of the vortex shedding induced phenomena.

Time-frequency analysis of a coupled bridge-vehicle system with breathing cracks

  • Wang, W.J.;Lu, Z.R.;Liu, J.K.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.169-185
    • /
    • 2012
  • The concrete bridge is likely to produce fatigue cracks during long period of service due to the moving vehicular loads and the degeneration of materials. This paper deals with the time-frequency analysis of a coupled bridge-vehicle system. The bridge is modeled as an Euler beam with breathing cracks. The vehicle is represented by a two-axle vehicle model. The equation of motion of the coupled bridge-vehicle system is established using the finite element method, and the Newmark direct integration method is adopted to calculate the dynamic responses of the system. The effect of breathing cracks on the dynamic responses of the bridge is investigated. The time-frequency characteristics of the responses are analyzed using both the Hilbert-Huang transform and wavelet transform. The results of time-frequency analysis indicate that complicated non-linear and non-stationary features will appear due to the breathing effect of the cracks.

Seismic performance evaluation using capacity spectrum method of bridge retrofitted with isolators (능력스펙트럼을 이용한 지진격리교량의 내진성능평가)

  • 김민지;한경봉;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.129-134
    • /
    • 2002
  • The seismic performance evaluation and retrofit process are very important for old bridge. If the result is not appropriate, a retrofit process requires. Among the various retrofit methods, this paper selects a seismic isolator and evaluates a seismic performance of bridge. In case of applied seismic isolators to bridge, it proved that seismic capacity is increased by isolators A period of bridge is increased, and a seismic response is decreased. A method of evaluation is capacity spectrum method. By means of a graphical procedure, capacity spectrum estimates a performance level of structure by comparing the capacity of structure with the demand of earthquake ground motion on the structure. The objective of this study is to compare a seismic performance of a non-seismic designed bridge and seismic isolated bridge and to verify a effect of seismic isolator

  • PDF

Dynamic Stability Evaluation of Special Bridge for High Speed Railroad under Vertical Ground Motion (연직 지진하중을 받는 고속철도 특수교량의 주행안정성 평가)

  • Kim, Dong-Seok;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1464-1469
    • /
    • 2010
  • In this paper, the dynamic stability evaluation of special bridge for high speed railway under ground excitation is performed. The mass, damping, stiffness matrices of bridge are derived from the modal frequencies and mode shape vectors which can be obtained by commercial program. And the high speed train is modeled as multi-single d.o.f models for the sake of vehicle-bridge interaction analysis. In the vehicle-bridge interaction analysis, the vertical directional interaction is only considered. As a numerical example, the 3 span Extradosed bridge which is expected to be installed in Ho-Nam high speed railroad is considered. The analysis results show that the example bridge satisfies the criteria of dynamic stability.

  • PDF

A Study on the Dynamic Impact of the AGT System Bridge, Caused by a Spall (스폴링에 의한 AGT 시스템 교량의 충격에 관한 연구)

  • Woo Sung-Won;Yun Suk-Koo;Lee An-Ho;Song Jae-Pil
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.342-347
    • /
    • 2004
  • The dynamic responses of a PSC bridge for automated guide-way transit system are investigated by analytical approach of bridge-vehicle interaction. In this study, the dynamic responses, concerned with a spall on the surface of bridge are emphasized. A simply supported pre-stressed concrete bridge is adopted as a numerical example. Dynamics of three-dimensional dynamic interaction system between bridges and vehicles is considered in this study. The FE method and modal analysis is used for modeling a bridge for dynamic response analysis. An AGT vehicle is idealized as a model with 11DOFs including lateral motion. It was found that the dynamic responses of bridge can be affected by a spall of surface. Especially, the vibrations are increased much more when a spall is exist.

  • PDF

Dynamic Analysis of Vehicle-Bridge System by the Dynamic Condensation Method (Dynamic Condensation Method를 이용한 차량-교량계의 동적해석)

  • Han, Jae-Ik;Lee, Kyeong-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.177-184
    • /
    • 1998
  • The equation of motion on the vehicle-bridge system is established as the simultaneous equations which are combined the equation of vehicle and bridge by the interaction elements. A vehicle element is modeled as lumped masses supported by springs and dashpots, and a bridge element with pavement roughness is modeled as beam elements. An interaction element is defined to consist of a bridge element and the suspension units of the vehicle resting on the element. By the dynamic condensation method, the degrees of the freedom are eliminated, and compared with all the degrees of freedom on the bridge, the efforts of calculation is decreased. Thus, although a very small computational error is occured, the present technique appears to be computationally more efficient. It is particularly suitable for the simulation of bridges with a series of vehicles moving on the deck.

  • PDF

Probabilistic sensitivity analysis of multi-span highway bridges

  • Bayat, M.;Daneshjoo, F.;Nistico, N.
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.237-262
    • /
    • 2015
  • In this study, we try to compare different intensity measures for evaluating nonlinear response of bridge structure. This paper presents seismic analytic fragility of a three-span concrete girder highway bridge. A complete detail of bridge modeling parameters and also its verification has been presented. Fragility function considers the relationship of intensities of the ground motion and probability of exceeding certain state of damage. Incremental dynamic analysis (IDA) has been subjected to the bridge from medium to strong ground motions. A suite of 20 earthquake ground motions with different range of PGAs are used in nonlinear dynamic analysis of the bridge. Complete sensitive analyses have been done on the response of bridge and also efficiency and practically of them are studied to obtain a proficient intensity measure for these types of structure by considering its sensitivity to the period of the bridge. Three dimensional finite element (FE) model of the bridge is developed and analyzed. The numerical results show that the bridge response is very sensitive to the earthquake ground motions when PGA and Sa (Ti, 5%) are used as intensity measure (IM) and also indicated that the failure probability of the bridge system is dominated by the bridge piers.

Ride comfort assessment of road vehicle running on long-span bridge subjected to vortex-induced vibration

  • Yu, Helu;Wang, Bin;Zhang, Guoqing;Li, Yongle;Chen, Xingyu
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.393-402
    • /
    • 2020
  • Long-span bridges with high flexibility and low structural damping are very susceptible to the vortex-induced vibration (VIV), which causes extremely negative impacts on the ride comfort of vehicles running on the bridges. To assess the ride comfort of vehicles running on the long-span bridges subjected to VIV, a coupled wind-vehicle-bridge system applicable to the VIV case is firstly developed in this paper. In this system, the equations of motion of the vehicles and the bridge subjected to VIV are established and coupled through the vehicle-bridge interaction. Based on the dynamic responses of the vehicles obtained by solving the coupled system, the ride comfort of the vehicles can be evaluated using the method given in ISO 2631-1. At last, the proposed framework is applied to several case studies, where a long-span suspension bridge and two types of vehicles are taken into account. The effects of vehicle speed, vehicle type, road roughness and vehicle number on the ride comfort are investigated.

Ride comfort of the bridge-traffic-wind coupled system considering bridge surface deterioration

  • Liu, Yang;Yin, Xinfeng;Deng, Lu;Cai, C.S.
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.19-43
    • /
    • 2016
  • In the present study, a new methodology is presented to study the ride comfort and bridge responses of a long-span bridge-traffic-wind coupled vibration system considering stochastic characteristics of traffic flow and bridge surface progressive deterioration. A three-dimensional vehicle model with 24 degrees-of-freedoms (DOFs) including a three-dimensional non-linear suspension seat model and the longitudinal vibration of the vehicle is firstly presented to study the ride comfort. An improved cellular automaton (CA) model considering the influence of the next-nearest neighbor vehicles and a progressive deterioration model for bridge surface roughness are firstly introduced. Based on the equivalent dynamic vehicle model approach, the bridge-traffic-wind coupled equations are established by combining the equations of motion of both the bridge and vehicles in traffic using the displacement relationship and interaction force relationship at the patch contact. The numerical simulations show that the proposed method can simulate rationally the ride comfort and bridge responses of the bridge-traffic-wind coupled system; and the vertical, lateral, and longitudinal vibrations of the driver seat model can affect significantly the driver's comfort, as expected.