• 제목/요약/키워드: Bridge motion

검색결과 388건 처리시간 0.022초

Dynamic Analysis of a Moving Vehicle on Flexible beam Structure (II) : Application

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.64-71
    • /
    • 2002
  • Recently, mechanical systems such as a high-speed vehicles and railway trains moving on flexible beam structures have become a very important issue to consider. Using the general approach proposed in the first part of this paper, it is possible to predict motion of the constrained mechanical system and the elastic structure, with various kinds of foundation supporting conditions. Combined differential-algebraic equation of motion derived from both multibody dynamics theory and finite element method can be analyzed numerically using a generalized coordinate partitioning algorithm. To verify the validity of this approach, results from the simply supported elastic beam subjected to a moving load are compared with the exact solution from a reference. Finally, parametric study is conducted for a moving vehicle model on a simply supported 3-span bridge.

지진 발생 후 도로망의 피해 산정을 위한 평가체계 개발 (Development of the System for Damage Assessment of Road Network after Seismic Excitation)

  • 이진훈;이형철;정동균;이상호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.216-221
    • /
    • 2006
  • This study provides a methodology for development of the Seismic Damage Evaluation System (SDES) in Korea. Major systems and status of database related to road networks in Korea are investigated to analyze the usability of the required information for developing the SDES. In this study, the SDES is composed of four components that are the road network component, the ground motion component, the fragile structure component, and the cost component. In addition, the procedures for the construction of database which support the SDES is proposed, and a prototype of the SDES for expressway of Korea is developed based on the developed methodology. The National Geospatial Information System (NGIS) and the National Earthquake Information System (NEIS) are used to develop the road network component and ground motion component, respectively. For the fragile structure component and the cost component, Highway Bridge Management System (HEMS) was used.

  • PDF

케이블 지지교량의 내진해석 (Seismic Analysis of Cable-Supported Bridges)

  • 서영국;정운용;조준상
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.233-240
    • /
    • 1999
  • A general procedure is presented here to develope seismic design and analysis method for cable-supported bridges like suspension bridges subjected to ground motion. For representing a numerical model of suspension bridges. a new approach which satisfy design conditions for the initial equilibrium state of suspension bridges. without any nonlinear iterations. is proposed. The dynamic behavior of that model is verified by free vibration analysis. This study uses the response spectrum analysis to determine the Peak response of a suspension bridge to earthquake-induced ground motion. The SRSS(Square Root of Sum of Square). modal combination rule, is adopted for each direction, longitudinal and transverse. To illustrate the potential applicability for the seismic design of suspension bridges, a numerical example is presented in which the dynamic response of the Nam-hae suspension bridge subjected to earthquake

  • PDF

사장교 케이블 동특성 평가를 위한 케이블 가진시스템 개발 (Development of Cable Exciting System for Evaluating Dynamic Characteristics of Stay Cables)

  • 김남식;정운;서주원;안상섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.424-429
    • /
    • 2003
  • As a critical member of cable-stayed bridges, stay cables play an important role of supporting the entire structure. Traffic, wind or rain-wind induced vibrations of stay cables would be a major cause of degrading both safety and serviceability of the bridge. One of the effective alternatives to solve this problem is to employ the cable dampers. In order to design the cable damper optimally. it is necessary to exactly estimate the dynamic characteristics of the existing cables. Therefore, in this study, a cable exciting system (exciter) controlled digitally was developed. And to evaluate the performance of the cable exciter developed, a solution of the differential equation of cable motion considering the exciter was derived. Using the cable exciter. sine sweeping and resonance tests on a cable model were carried out to obtain the dynamic characteristics effectively.

  • PDF

Nonlinear dynamic performance of long-span cable-stayed bridge under traffic and wind

  • Han, Wanshui;Ma, Lin;Cai, C.S.;Chen, Suren;Wu, Jun
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.249-274
    • /
    • 2015
  • Long-span cable-stayed bridges exhibit some features which are more critical than typical long span bridges such as geometric and aerodynamic nonlinearities, higher probability of the presence of multiple vehicles on the bridge, and more significant influence of wind loads acting on the ultra high pylon and super long cables. A three-dimensional nonlinear fully-coupled analytical model is developed in this study to improve the dynamic performance prediction of long cable-stayed bridges under combined traffic and wind loads. The modified spectral representation method is introduced to simulate the fluctuating wind field of all the components of the whole bridge simultaneously with high accuracy and efficiency. Then, the aerostatic and aerodynamic wind forces acting on the whole bridge including the bridge deck, pylon, cables and even piers are all derived. The cellular automation method is applied to simulate the stochastic traffic flow which can reflect the real traffic properties on the long span bridge such as lane changing, acceleration, or deceleration. The dynamic interaction between vehicles and the bridge depends on both the geometrical and mechanical relationships between the wheels of vehicles and the contact points on the bridge deck. Nonlinear properties such as geometric nonlinearity and aerodynamic nonlinearity are fully considered. The equations of motion of the coupled wind-traffic-bridge system are derived and solved with a nonlinear separate iteration method which can considerably improve the calculation efficiency. A long cable-stayed bridge, Sutong Bridge across the Yangze River in China, is selected as a numerical example to demonstrate the dynamic interaction of the coupled system. The influences of the whole bridge wind field as well as the geometric and aerodynamic nonlinearities on the responses of the wind-traffic-bridge system are discussed.

Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction

  • Lee, Do Hyung;Elnashai, Amr S.
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.241-260
    • /
    • 2002
  • The effect of shear coupled with axial force variation on the inelastic seismic behaviour of reinforced concrete bridge piers is investigated in this paper. For this purpose, a hysteretic axial-shear interaction model was developed and implemented in a nonlinear finite element analysis program. Thus, flexure-shear-axial interaction is simulated under variable amplitude reversed actions. Comparative studies for shear-dominated reinforced concrete columns indicated that a conventional FE model based on flexure-axial interaction only gave wholly inadequate results and was therefore incapable of predicting the behaviour of such members. Analysis of a reinforced concrete bridge damaged during the Northridge (California 1994) earthquake demonstrated the importance of shear modelling. The contribution of shear deformation to total displacement was considerable, leading to increased ductility demand. Moreover, the effect of shear with axial force variation can significantly affect strength, stiffness and energy dissipation capacity of reinforced concrete members. It is concluded that flexure-shear-axial interaction should be taken into account in assessing the behaviour of reinforced concrete bridge columns, especially in the presence of high vertical ground motion.

R/C 교각의 비선형성을 고려한 교량시스템의 2방향 지진거동분석 (Dynamic Behavior Analysis of a Bridge Considering Nonlinearity of R/C Piers under Bi-Directional Seismic Excitations)

  • 김상효;마호성;이상우;강정운
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.353-360
    • /
    • 2001
  • An analysis procedure of 2-dimensional bridge dynamics has been developed by using force-deformation model, which simulates the pier motion under biaxial bending due to the bi-directional input seismic excitations. A three-dimensional mechanical model is utilized, which can consider the other major phenomena such as pounding, rotation of the superstructure, abutment stiffness degradation, and motions of the foundation motions. The bi-directional dynamic behaviors of the bridge are then examined by investigating the relative displacements of each oscillator to the ground. It is found that the nonlinearity of the pier due to biaxial bending affects the pier motions, but the global bridge behaviors are greatly governed by the pounding phenomena and stiffness degradation of the abutment-backfill system. Especially, the relative displacement of the abutment system (A2) with movable supports to the ground is increased about 30% due to the abutment stiffness degradation.

  • PDF

Identification of flutter derivatives of bridge decks using CFD-based discrete-time aerodynamic models

  • Zhu, Zhiwen;Gu, Ming
    • Wind and Structures
    • /
    • 제18권3호
    • /
    • pp.215-233
    • /
    • 2014
  • This paper presents a method to extract flutter derivatives of bridge decks based on a combination of the computational fluid dynamics (CFD), system simulations and system identifications. The incompressible solver adopts an Arbitrary Lagrangian-Eulerian (ALE) formulation with the finite volume discretization in space. The imposed sectional motion in heaving or pitching relies on exponential time series as input, with aerodynamic forces time histories acting on the section evaluated as output. System identifications are carried out to fit coefficients of the inputs and outputs of ARMA models, as to establish discrete-time aerodynamic models. System simulations of the established models are then performed as to obtain the lift and moment exerting on the sections to a sinusoidal displacement. It follows that flutter derivatives are identified. The present approaches are applied to a hexagon thin plate and a real bridge deck. The results are compared to the Theodorsen closed-form solution and those from wind tunnel tests. Satisfactory agreements are observed.

Pseudo-dynamic실험에 의한 원형충진 RC 교각의 내진거동 (Seismic Performance of Circular Reinforced Concrete Bridge Piera By Pseudo-Dynamic Test)

  • 조창백;소진호;빅종협;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.464-469
    • /
    • 2000
  • Since the occurrence of 1995 Kobe earthquake, there have been much concern about seismic design for various infrastructures, inclusive of bridge structures. This research aims at evaluating the seismic performance of the existing R/C bridge piers, which were nonseismically or seismically designed in accordance with the provision of Korea Highway Design Specification. Further experimental investigations have been doing to figure out the retrofitting effects of nonseismic R/C bridge piers confined with glass fiber at the plastic hinge zone. Pseudo-dynamic tests have been carried out in nine scaled R/C column specimens to investigate their hysteretic behavior under earthquake loading. Test parameters are axial load, input ground motion confinement steel ratio, glass fiber and etc.

  • PDF

Analysis of local vibrations in the stay cables of an existing cable-stayed bridge under wind gusts

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • 제30권5호
    • /
    • pp.513-534
    • /
    • 2008
  • This paper examines local vibrations in the stay cables of a cable-stayed bridge subjected to wind gusts. The wind loads, including the self-excited load and the buffeting load, are converted into time-domain values using the rational function approximation and the multidimensional autoregressive process, respectively. The global motion of the girder, which is generated by the wind gusts, is analyzed using the modal analysis method. The local vibration of stay cables is calculated using a model in which an inclined cable is subjected to time-varying displacement at one support under global vibration. This model can consider both forced vibration and parametric vibration. The response characteristics of the local vibrations in the stay cables under wind gusts are described using an existing cable-stayed bridge. The results of the numerical analysis show a significant difference between the combined parametric and forced vibrations and the forced vibration.