• 제목/요약/키워드: Bridge life

검색결과 531건 처리시간 0.016초

교량의 유지관리를 위한 사용수명 정의, 종료 기준, 추정 (Definition, End-of-life Criterion and Prediction of Service Life for Bridge Maintenance)

  • 정유석;김우석;이일근;이재하;김진광
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권4호
    • /
    • pp.68-76
    • /
    • 2016
  • 본 논문에서는 교량의 유지관리를 위한 사용수명의 정의 및 수명 종료를 제안하였다. 먼저 국내외 교량의 수명용어 관련 현황을 바탕으로 교량의 사용수명을 정립하였다. 교량의 사용수명이란 '교량이 유지관리 통해 요구하는 수준의 기능을 발휘하는 기간'으로 정의 하였다. 그리고 사용수명 종료 제안을 위해 국내외 수명종료 기준을 분석하고 교량에 발생 가능한 수명 종료 유형을 분류하여 수명종료를 제안하였다. 사용수명 종료 제안 시, 교량의 성능지표(결함도 점수)를 활용하였으며 상태등급 'D'등급의 중간값인 결함도 점수 0.64를 수명종료 기준으로 제안하였다. 민감도 분석을 실시하여 제안된 교량의 사용수명 종료 시점의 타당성을 검토하였다. 마지막으로 제안한 사용수명 종료 시점을 활용하여 현재 고속도로 교량의 평균 사용수명을 70.8년으로 추정하였다.

Optimal Target Reliability of Bridges Based on Minimum Life-Cycle Cost Consideration

  • Wang, Junjie;Lee, J-C
    • Computational Structural Engineering : An International Journal
    • /
    • 제2권1호
    • /
    • pp.11-17
    • /
    • 2002
  • Cost-effectiveness in design is considered for determining the target reliability of concrete bridges under seismic actions. This objective can be achieved based on the economic optimization of the expected life-cycle cost of a bridge, which includes initial cost, direct losses, and indirect losses of a bridge due to strong earthquakes over its lifetime. A separating factor is defined to consider the redundancy of a transportation network. The Park-Ang damage model is employed to define the damage of a bridge under seismic action, and a Monte Carlo method based on the DRAIN-2DX program is developed to assess the failure probability of a bridge. The results for an example bridge analyzed in this paper show that the optimal target failure probability depends on the traffic volume carried by the bridge and is between 1.0×10/sup -3/ to 3.0×10/sup -3/ over a life of 50 years.

  • PDF

RELIABILITY-BASED COMPONENT DETERIORATION MODEL FOR BRIDGE LIFE-CYCLE COST ANALYSIS

  • Rong-yau Huang;Wen-zheng Hsu
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.386-397
    • /
    • 2007
  • One major development in bridge life cycle cost analysis (LCCA) in recent years is to develop deterioration model for bridge components so that the times of repair/replacement throughout a component's life span can be properly determined. Taiwan also developed her own bridge LCCA model in 2003, integrating with the bridge inspection database in the local bridge management system (T-BMS). Under the framework of the local LCCA model, this study employs the reliability method in developing a deterioration model of bridge components. A component deteriorates through time in its reliability, which represents the probability of a component's condition index exceeds a user specified threshold. Model assumptions and rationale are described in the paper. The steps for applying the developed model are explained in detail. Results and findings are reported.

  • PDF

Applications of bridge information modeling in bridges life cycle

  • Marzouk, Mohamed M.;Hisham, Mohamed;Al-Gahtani, Khalid
    • Smart Structures and Systems
    • /
    • 제13권3호
    • /
    • pp.407-418
    • /
    • 2014
  • The purpose of this paper is to present an Integrated Life Cycle Bridge Information Modeling that can be used throughout different phases of the bridge life cycle including: design, construction, and operation and maintenance phases. Bridge Information Modeling (BrIM) has become an effective tool in bridge engineering and construction. It has been used in obtaining accurate shop drawings, cost estimation, and visualization. In this paper, BrIM is used as an integrated tool for bridges life cycle information modeling. In the design phase, BrIM model can be used in obtaining optimum construction methods and performing structural advanced analysis. During construction phase, the model selects the appropriate locations for mobile cranes, monitors the status of precast components, and controls documents. Whereas, it acts as a tool for bridge management system in operation and maintenance phase. The paper provides a detailed description for each use of BrIM model in design, construction, and operation and maintenance phases of bridges. It is proven that BrIM is an effective tool for bridge management systems throughout their life phases.

Assessment of load carrying capacity and fatigue life expectancy of a monumental Masonry Arch Bridge by field load testing: a case study of veresk

  • Ataei, Shervan;Tajalli, Mosab;Miri, Amin
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.703-718
    • /
    • 2016
  • Masonry arch bridges present a large segment of Iranian railway bridge stock. The ever increasing trend in traffic requires constant health monitoring of such structures to determine their load carrying capacity and life expectancy. In this respect, the performance of one of the oldest masonry arch bridges of Iranian railway network is assessed through field tests. Having a total of 11 sensors mounted on the bridge, dynamic tests are carried out on the bridge to study the response of bridge to test train, which is consist of two 6-axle locomotives and two 4-axle freight wagons. Finite element model of the bridge is developed and calibrated by comparing experimental and analytical mid-span deflection, and verified by comparing experimental and analytical natural frequencies. Analytical model is then used to assess the possibility of increasing the allowable axle load of the bridge to 25 tons. Fatigue life expectancy of the bridge is also assessed in permissible limit state. Results of F.E. model suggest an adequacy factor of 3.57 for an axle load of 25 tons. Remaining fatigue life of Veresk is also calculated and shown that a 0.2% decrease will be experienced, if the axle load is increased from 20 tons to 25 tons.

Performance-based remaining life assessment of reinforced concrete bridge girders

  • Anoop, M.B.;Rao, K. Balaji;Raghuprasad, B.K.
    • Computers and Concrete
    • /
    • 제18권1호
    • /
    • pp.69-97
    • /
    • 2016
  • Performance-based remaining life assessment of reinforced concrete bridge girders, subject to chloride-induced corrosion of reinforcement, is addressed in this paper. Towards this, a methodology that takes into consideration the human judgmental aspects in expert decision making regarding condition state assessment is proposed. The condition of the bridge girder is specified by the assignment of a condition state from a set of predefined condition states, considering both serviceability- and ultimate- limit states, and, the performance of the bridge girder is described using performability measure. A non-homogeneous Markov chain is used for modelling the stochastic evolution of condition state of the bridge girder with time. The thinking process of the expert in condition state assessment is modelled within a probabilistic framework using Brunswikian theory and probabilistic mental models. The remaining life is determined as the time over which the performance of the girder is above the required performance level. The usefulness of the methodology is illustrated through the remaining life assessment of a reinforced concrete T-beam bridge girder.

WIRELESS SENSOR NETWORK BASED BRIDGE MANAGEMENT SYSTEM FOR INFRASTRUCTURE ASSET MANAGEMENT

  • Jung-Yeol Kim;Myung-Jin Chae;Giu Lee;Jae-Woo Park;Moon-Young Cho
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1324-1327
    • /
    • 2009
  • Social infrastructure is the basis of public welfare and should be recognized and managed as important assets. Bridge is one of the most important infrastructures to be managed systematically because the impact of the failure is critical. It is essential to monitor the performance of bridges in order to manage them as an asset. But current analytical methods such as predictive modeling and structural analysis are very complicated and difficult to use in practice. To apply these methods, structural and material condition data collection should be performed in each element of bridge. But it is difficult to collect these detailed data in large numbers and various kinds of bridges. Therefore, it is necessary to collect data of major measurement items and predict the life of bridges roughly with advanced information technologies. When certain measurement items reach predefined limits in the monitoring bridges, precise performance measurement will be done by detailed site measurement. This paper describes the selection of major measurement items that can represent the tendency of bridge life and introduces automated bridge data collection test-bed using wireless sensor network technology. The following will be major parts of this paper: 1) Examining the features of conventional bridge management system and data collection method 2) Mileage concept as a bridge life indicator and measuring method of the indicator 3) Test-bed of automated and real-time based bridge life indicator monitoring system using wireless sensor network

  • PDF

효율적인 고속도로 교량의 유지관리를 위한 교량 부재별 수명분포 및 평균수명 산정 방안 연구 (A Study on Estimating of Probability Distribution and Mean Life of Bridge Member for Effective Maintenance of the Bdrige)

  • 이용준;이민재
    • 한국건설관리학회논문집
    • /
    • 제17권4호
    • /
    • pp.57-65
    • /
    • 2016
  • 본 연구에서는 신뢰성 개념을 도입하여 최근 10년간의 한국도로공사 관할의 교량부재별의 유지보수 이력 데이터를 기반으로 적합한 모수적 수명 분포를 찾고 최대우도법으로 구해진 모수를 이용하여 교량 부재별 평균수명 및 신뢰도를 산정하는 방안을 제안하였다. 교량 부재별의 수명 데이터를 가장 잘 설명하는 모수적 수명 분포형태를 찾기 위해 많이 활용되는 지수분포, 와이블분포, 대수정규분포를 대상으로 분석한 결과 대수정규분포와 와이블분포가 해당 수명 데이터의 특성을 가장 잘 설명하는 것으로 나타났다. 이 때 모수 추정을 위해서 최대우도법을 사용하였으며, 적합성 검정을 위해서는 AD통계량을 이용하였다. 추정된 모수를 기반으로 교량 부재별 평균수명을 산정한 결과, 강교도장이 18.51년으로 가장 길었으며, 바닥판이 17.56년으로 그 다음 순이었다. 배수시설과 교량받침의 경우 평균수명이 각각 12.27년, 12.57년으로 가장 짧았다. 또한 교량의 평균수명일 때 추정된 신뢰도 지표는 현재 교량 부재별 유지보수 시점이라고 할 수 있다. 교량받침, 바닥판, 하부구조, 배수시설의 경우 다른 부재보다 빠른 시기에 유지보수를 하는 것으로 분석되었다.

생애주기비용을 고려한 PSC-I형 교량의 최적설계 (Optimal Design of PSC-I Girder Bridge Considering Life Cycle Cost)

  • 박장호;신영석
    • 한국안전학회지
    • /
    • 제24권5호
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the procedure for the optimal design of a PSC-I girder bridge considering life cycle cost (LCC). The load carrying capacity curves for the concrete deck, PSC-I girder and $\pi$-type pier were derived and used for the estimate of service lives. Total life cycle cost for the service life was calculated as sum of initial cost, damage cost, maintenance cost, repair and rehabilitation cost, user cost, and disposal cost. The advanced First Order Second Moment method was used to estimate the damage cost. The optimization method was applied to the design of PSC-I girder bridge. The objective function was set to the annual cost, which is defined by dividing the total life cycle cost by the service life, and constraints were formulated on the basis of Korean Standards. The optimal design was performed for various service lives and the effects of design factors were investigated.

철도교량의 생애주기비용분석에 관한 연구 (A Study on the Life Cycle Cost Analysis of Railroad Bridges)

  • 박미연;나옥빈;황영민;김대영;조효남
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.574-580
    • /
    • 2005
  • Recently, the number of bridges and tunnels in railway is increasing due to the super high-speedy of train. Also, because of successively accidents of civil structures such as bridges and dams, the importance of maintenance become influential. The purpose of this study is to show the probabilistic life cycle cost analysis technique(PLCC) of the railroad bridge as pubic-infrastructures, and reasonably to indicate the economy in life cycle cost(LCC) through a case study. Rationally for life cycle cost analysis, the data gathered through many materials considered the uncertainty such as covariance. As a result, it is indicated that prestressed concrete bridge is pretty more cost-effective during life-cycle than preflex as well as steel box bridge. In future, if the construction of database and maintenance materials for railroad infrastructure is actualized, the life cycle cost analysis for railroad can be conducted easily and practically.

  • PDF