• Title/Summary/Keyword: Bridge foundation

Search Result 310, Processing Time 0.037 seconds

Dynamic Behavior and Seismic Fragility Analysis of Shallow Foundation Bridge Considering Scour (세굴을 고려한 얕은 기초 교량의 동적거동 분석 및 지진 취약도 해석)

  • Kim, Na-Yeon;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.79-89
    • /
    • 2016
  • If scour is occurred at shallow foundation of bridge, seismic performance of the bridge will be reduced. In order to evaluate accurate seismic response of bridge according to scour depths, modeling of foundation reflecting scour effect is important. In this study, taking into account the effect of the reduction in embedment depth of the shallow foundation by scouring, the soil around the foundation is modelled as an equivalent soil spring with various stiffness. Seismic fragility analyses for 3 types of bridges subjected to 4 types of ground motions classified into Site Class A, B, C, D are evaluated according to several scour depths. From the fragility analysis results, it can be observed that the deeper the scour depth, the higher probability of exceeding damage states. Also, seismic failure probability of asymmetric bridge is higher than that of symmetric bridge.

A Study on Reliability Based Design Criteria for Bridge Foundation (교량기초의 신뢰성 설계규준에 관한 연구)

  • 손용우;정철원
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.77-89
    • /
    • 1993
  • Current Bridge foundation design is based on Working Stress Design(WSD), but Load Factor Based on Optimum Reliability(LFBOR) design method is more rational than the WSD. For this reason, this study proposes a reliability based design criteria for the bridge foundation, which is most common type of bridge foundation(Shallow, Pile and Caission), and also proposes the theoretical basis of nominal safety factors of stability analysis by introducing the reliability theory. The limit state equations of stability analysis of bridge foundation and the uncertainty measuring algorithms of each equation are also derived by Cornell's MFOSM(Mean First Order 2nd Moment Methods)using the stability analysis fourmula Highway Bridge Design Codes.

  • PDF

Studies on the Restoration of Ancient Bridge Setakarahashi -Conservation and Display for Large Size Waterlogged Wood- (고대 세다당교의 보존처리 - 대형출토목재의 보존과 전시 -)

  • NAKAGAWA, Masato
    • Journal of Conservation Science
    • /
    • v.5 no.2 s.6
    • /
    • pp.51-56
    • /
    • 1996
  • This paper deals with the restoration of ancient wooden bridge foundation which excavated in Seta river Shiga Prefecture, Japan. Shiga Archeological Research started a marine archeological investigation of the bridge foundation in 1987. The bridge foundation stricture excavated and have since then recovered about a lots of woods and another materials. The bridge foundation structure constructed log, timbers and stones. The species of those waterlogged wood were identified as two types, hardwood and softwood. Hardwood(log : Cyclobalanopsis) was used for below foundation and softwood (timber' Chamaecyparis obtusa Endl. Cupreessaceae) was used for base structure. One of those timber sample dated by dendrochronology, we asked Dr. Misutani*. The softwood gave a felling date of 567 A.D. In result, the ancient Seta bridge foundation structure had constructed between Asuka and Nara period. We healed the news that ancient bridge foundation excavated at Woljyongyo site in Kyongju, Korea 1987. The bridge foundation Setakarahashi is similar in plane and structure to Woljyongyo structures. The Woljyongyo site report had be of value for reference. We had planning to restore those woods. Hardwood log was got serious damage. The water content varies from 400 to $600\%$. The other timbers water content varies about $200\%$. In the Shiga Center for Archaeological Operations and the Azuchi Castle Archaeological Museum, we set up the PEG impregnation tank. Those wooden objects treated by PEG method. PEG with a molecular weight of 4000. The treatment results may be considered satisfactory. The ancient wooden Seta bridge was reconstructed in Biwako Museum which established in Oct. 1996. We must take care of indoor exhibition environments. (*Nara National Cultual Properties Research Institute).

  • PDF

Case Study on Foundation Design of over-water Bridge (해상교량기초의 설계 사례)

  • Jang, Hak-Sung;Jang, Young-Il;Choi, Young-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.221-228
    • /
    • 2005
  • The economic growth brought the demand of bridge connected to island and land increasingly in Korea. Therefore, Civil engineer has faced a lot of problem to be considered such as structural stability, economic feasibility and constructional method. At the bridge site to be constructed, the depth of water is about 24m, the thickness of weathered rock overlaying bed rock is thicker than 36m. If open caisson foundation is supported in bed rock, the hight of foundation is about 60m. It is difficult to construct in these conditions. If open caisson foundation is supported in weathered rock, the size of the foundation should be increased. And If we apply the pile foundation, the higher construction cost will be needed. Under the circumstances, we need a new foundation type-composite foundation that is consisted of open caisson and cast-in-place piles. Because the design concept of composite foundation is not presented in Korea Bridge Design Standard, we are willing to clear the bearing behavior of composite foundation by numerical analysis in this paper.

  • PDF

An Impact Test for investigating the Dynamic Characteristics of Actual Bridge Foundation (교량기초의 동적특성 파악을 위한 충격실험)

  • Kim, Hak-Soo;Lee, Sang-Hee;Yang, Kyung-Taek;Kim, Saeng-Bin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.2
    • /
    • pp.115-122
    • /
    • 1997
  • Although most bridge foundations are usually constructed by Caisson, terrain difficulties sometimes bring about constructing bridge foundations by Jacket piles. This study investigated the dynamic characteristics of Caisson and Jacket by testing the impact applied to actual bridge foundations. The test result showed that the damping ratio of the foundation constructed by Jacket and Caisson were measured 1-2% and 3-6%, respectively. Considering the lateral deflection measured by the impact test, the rigidity of foundations constructed by Jacket was assessed about 1/5 - 1/6 of those constructed by Caisson. It implies that designing bridge foundations should include and reflect the dynamic analysis of bridge foundation.

  • PDF

Seismic response of bridge pier supported on rocking shallow foundation

  • Deviprasad, B.S.;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.73-84
    • /
    • 2020
  • In the seismic design of bridges, formation of plastic hinges plays an important role in the dissipation of seismic energy. In the case of conventional fixed-base bridges, the plastic hinges are allowed to form in the superstructure alone. During seismic event, such bridges may be safe from collapse but the superstructure undergoes significant plastic deformations. As an alternative design approach, the plastic hinges are guided to form in the soil thereby utilizing the inevitable yielding of the soil. Rocking foundations work on this concept. The formation of plastic hinges in the soil reduces the load and displacement demands on the superstructure. This study aims at evaluating the seismic response of bridge pier supported on rocking shallow foundation. For this purpose, a BNWF model is implemented in OpenSees platform. The capability of the BNWF model to capture the SSI effects, nonlinear behavior and dynamic loading response are validated using the centrifuge and shake table test results. A comparative study is performed between the seismic response of the bridge pier supported on the rocking shallow foundation and conventional fixed-base foundation. Results of the study have established the beneficial effects of using the rocking shallow foundation for the seismic response analysis of the bridge piers.

Evaluation of the Vulnerability of Bridge Foundations to Scour (세굴로 인한 교량기초의 위험도 평가)

  • Kwak, Ki-Seok;Park, Jae-Hyun;Lee, Ju-Hyung;Chung, Moon-Kyung;Kim, Jong-Cheon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.713-718
    • /
    • 2005
  • A methodology is developed to evaluate the vulnerability of bridge piers to scour and to help establish effective disaster measures, taking into account the locality and scour characteristics in Korea. Based on the bearing capacity of bridge foundation-ground integrating system changed by scour, this methodology is able to prioritize bridge foundations reflecting on the geotechnical factors as well as hydraulic ones. The bridge foundation vulnerability to scour is categorized into 7 groups considering the concise information of the bridge foundation-ground integrating system. A case study of implementing this method which includes the analysis of the scour depth and evaluation, and categorizing the scour vulnerability of bridge foundation is presented.

  • PDF

Dynamic Behavior Analysis of Bridges under the Combined Effect of Earthquake and Scour (지진 및 기초의 세굴을 고려한 교량시스템의 동적거동분석)

  • 김상효;최성욱;이상우;김호상
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.187-194
    • /
    • 2002
  • Bridge dynamic behaviors and the failure of the foundation are examined in this study under seismic excitations including the local scour effect. The simplified mechanical model, which can consider the effect of various influence elements, is proposed to simulate the bridge motions. The scour depths around the foundations are estimated by the CSU equation recommended by the HEC-18 and the local scour effect upon global bridge motions is then considered by applying various foundation stiffness based upon the reduced embedded depths. From the simulation results, it is found that seismic responses of a bridge with the same scour depth for both foundations increase due to the local scour effect. The bridge scour is found to be significant under weak and moderate seismic intensity. The recovery durations of the foundation stiffness after local scour are found to be critical in the estimation of the probability of foundation failure under earthquakes. Therefore, the safety of the whole bridge system should be conducted with the consideration of the scour effect upon the foundations and the recovery duration of stiffness should be determined rationally.

  • PDF

Centrifuge Modelling of Bridge Abutment Foundation on the Sloped Ground (경사지반에 위치한 교대기초의 원심모델링)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Hong, Young-Kil
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.209-214
    • /
    • 2007
  • This paper is the research result about centrifuge model experiments of investigating the behavior of bridge abutment on the sloped ground. Ground condition of the studied site was the bridge abutment with pile foundation adjacent to the slope. The pile foundations was supported on the soft rocks covered with the embankment. Evaluating the behavior of such a complicate ground and structure conditions was not easy so that the centrifuge modelling was performed to find the overall behavior of them. Layout of centrifuge model experiment was simplified to simulate easily the actual behavior of very complicate site condition. Construction process in field such as ground excavation for footing foundation, installation of piles, placement of footing and bridge abutment, backfilling and surcharge loading eas duplicated in the centrifuge model experiment. Consequently, the stability of the piled bridge abutment adjacent to the slope of embankment was evaluated throughout centrifuge modelling.

  • PDF

A Case Study of Scour Vulnerability Evaluation for Shallow Foundations during Floods (홍수시 얕은기초의 세굴위험도 평가 사례연구)

  • Park, Jae-Hyun;Lee, Ju-Hyung;Chung, Moon-Kyung;Kwak, Ki-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.59-62
    • /
    • 2008
  • Scour vulnerability evaluation for shallow foundations was performed to assure bridge safety against scour in the national capital region. The case studies for 26 shallow foundations consisted of site investigation including boring test, bridge scour analysis for the design flood, bearing capacity evaluation of the bridge foundation before and after scour, and comprehensive evaluation of bridge scour vulnerability. Bridge scour vulnerability was determined based on the interdisciplinary concept considering predicted scour depth for the design floods and bearing capacity of foundation as well as dimensions of foundation. Nine of 26 shallow foundations showed the potential future vulnerability to scour with significant decrease in the bearing capacity of foundations due to scour and the remaining 17 were expected to maintain their stability against scour.

  • PDF