• Title/Summary/Keyword: Bridge Rating

Search Result 131, Processing Time 0.024 seconds

A Decision Support Methodology for Remediation Planning of Concrete Bridges

  • Rashidi, Maria;Lemass, Brett
    • Journal of Construction Engineering and Project Management
    • /
    • v.1 no.2
    • /
    • pp.1-10
    • /
    • 2011
  • Bridges are critical and valuable components in any road and rail transportation network. Therefore bridge remediation has always been a top priority for asset managers and engineers, but identifying the nature of true defect deterioration and associated remediation treatments remains a complex task. Nowadays Decision Support Systems (DSS) are widely used to assist decision makers across an extensive spectrum of unstructured decision environments. The main objective of this research is to develop a requirements-driven methodology for bridge monitoring and maintenance which has the ability to assess the bridge condition and find the best remediation treatments using Simple Multi Attribute Rating Technique (SMART); with the aim of maintaining a bridge within acceptable limits of safety, serviceability and sustainability.

System Reliability-Based Safety and Capacity Evaluation of Cable-Stayed Bridges (쳬계신뢰성에 기초한 사장교의 안전도 및 내하력 평가)

  • 조효남;이승재;임종권;김보헌
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.105-112
    • /
    • 1996
  • A practical approach for the assessment of system reliability-based safety and load carring capacity under vehicle traffics is proposed for the realistic evaluation of safety and rating of cable-stayed bridges. A partial event tree analysis model incorporating major critical failure paths is suggested as a practical tool for the system reliability analysis and system reliability-based capacity rating. The proposed approach for the system reliability analysis and system reliability-based rating is applied to the safety assessment of the Jindo Bridge which is one of two existing cable-stayed bridges in Korea. The results of analyses at the system level based on the system reliability are compared with those at the element level.

  • PDF

Strengthening Design Using Rating Factor Considering Increment of Tendon Force for Two-Span Steel-concrete Composite Bridges Strengthened by Straight External Tendons (직선배치된 외부 긴장재로 보강된 2경간 강합성교의 증가 프리스트레스력을 고려한 내하율 산정식을 이용한 보강설계)

  • Choi, Dong-Ho;Yoo, Hoon;Kim, Yong-Sik;Kim, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.153-164
    • /
    • 2009
  • In this paper, a method of increasing in load-carrying capacity is shown in two-span steel-concrete composite bridges strengthened by external tendons. An analytic expression for the increment of tendon force under external loads is derived using virtual work method for straight external tendons and a new rating factor equation is proposed. Considering the initial tendon force and its increment under external loads, an analytic procedure has been developed to calculate the number of tendons and the initial tendon force from the proposed rating factor equation. This method is used to verify a validity and rationality for an existing two-span composite steel-concrete bridge.

Strengthening Design by External Pre-tensioning and Post-tensioning Methods for Steel-concrete Composite Girders using Rating Factor (내하율을 이용한 강합성보의 외부 프리텐션과 포스트텐션 보강 설계)

  • Choi, Dong-Ho;Yoo, Dong-Min;Jeong, Gu-Sang;Park, Kyung-Boo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.123-134
    • /
    • 2007
  • A method to determine the initial force of external tendon is proposed to improve the load carrying capacity in existing steel-concrete composite bridges. This method is applied to tensioning external tendons prior to and after concrete replacement for strengthening composite girders. A procedure to determine the number of tendon and initial tendon force is described with the proposed rating factor, which considers the increment of tendon force due to live loads. The method is applied to the improvement of rating factor in an existing composite bridge and its validity is confirmed.

A Primary-Side-Assisted Zero-Voltage and Zero-Current Switching Full Bridge DC-DC Converter with Transformer Isolation for Arc Welding (아크 용접에 적합하며 1차 측 보조회로를 사용하는 영전압-영전류 직류-직류 컨버터)

  • Jeon, Seong-Jeub;Cho Gyu-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.683-692
    • /
    • 2000
  • A new primary-side-assisted zero-voltage and zero-current switching full bridge DC-DC converter with transformer isolation is proposed. The auxiliary circuit adopted to assist ZCS for the leading leg is composed of only one small transformer and two diodes. It has a simple and robust structure, and load current control capability even in short circuit conditions. Possibility of magnetic saturation due to asymmetricity of circuits or transient phenomena is greatly reduced, which is a very attractive feature in DC/DC converters with transformer isolation. The power rating of the auxiliary transformer is about 10% of that of the main transformer. Operation of a 12.5KW prototype designed for welding application was verified by experiments.

  • PDF

Development of Permit Vehicle Classification System for Bridge Evaluation in Korea (허가차량 통행에 대한 교량의 안전성 평가를 위한 허가차량 분류 체계 개발)

  • Yu, Sang Seon;Kim, Kyunghyun;Paik, Inyeol;Kim, Ji Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.845-856
    • /
    • 2020
  • This study proposes a bridge evaluation system for indivisible permit vehicles such as hydraulic cranes. The permit loads for the bridge evaluation are divided into three categories: routine permit loads, special permit 1 loads, and special permit 2 loads. Routine permit and special permit 1 vehicles are allowed to cross a bridge with normal traffic. For these two permits, the standard lane model in the Korean Highway Bridge Design Code was adopted to consider normal traffic in the same lane. Special permit 2 vehicles are assumed to cross a bridge without other traffic. Structural analyses of two prestressed-beam bridges and two steel box girder bridges were conducted for the proposed permit loads. The rating factors of the four bridges for all permit loads were calculated as sufficiently large values for the moment and shear force so that crossing the bridges can be permitted. A reliability assessment of the bridges was performed to identify the reliability levels for the permit vehicles. It was confirmed that the reliability level of the minimum required strength obtained by the load-resistance factors yields the target reliability index of the design code for the permit vehicles.

Long-Term Performance Evaluation of a GFRP Slab Bridge (GFRP 슬래브 교량의 장기성능 평가)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.349-360
    • /
    • 2012
  • This paper describes a detailed assessment of the structural safety, serviceability, capacity rating and long-term performance of a glass fiber-reinforced polymer (GFRP) slab bridge superstructure. This first all-GFRP slab bridge was installed in Korea on May 2002. The GFRP slab bridge is a simply supported, its length is 10.0 m, and is designed to carry two-lane traffic and has an overall width of 8.0m. The GFRP slab bridge is a sandwich structure with a corrugated core, fabricated by hand lay-up process with E-glass fibers and vinyl ester resins. The assessment of long-term performance for the GFRP slab bridge in 2004, 2011 includes a field load testing identical to that performed in 2002. The assessment indicates that the GFRP slab bridge has no structural problems and is structurally performing well in-service as expected. The assessment may provide a baseline data for the capacity ratings assessment of the GFRP slab bridge and also serve as part of a long-term performance of all-GFRP bridge superstructure.

Analysis of Series Resonant High Frequency Inverter using Sequential Gate Control Strategy (순차식 게이트 구동방식에 의한 직렬 공진형 고주파 인버터 특성 해석)

  • 배영호;서기영;권순걸;이현우
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.3
    • /
    • pp.57-66
    • /
    • 1993
  • This research proposes a high frequency series resonant inverter consisting of equivalent half - bridge model in combination with two L-C linked full-bridge inverter circuits using MOSFET. As a output power control strategy, the sequential gate control method is applied. Also, analysis of operating MODE and state equation is described. From the computer simulation results, the inverters and devices can be shared properly voltage and current rating of the system in accordance with series and parallel operations. And it is confirmed that the proposed system has very stable performance.

  • PDF

A study on the Life Cycle Profiles(LCP) for RC Slab Bridge (철근콘크리트 슬래브교의 노후화 예측모델에 관한 연구)

  • Ahn, Young-Ki;Lee, Chae-Gue;Lee, Jin-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.251-262
    • /
    • 2003
  • LCP(Life Cycle Profiles) of bridge structures are indispensable for the LCC(Life Cycle Cost) evaluations of bridge system. The bridge under considerations may be newly-designed one or one in service. Thus, a systematic study of LCP is essential for both reliable LCC evaluation and strategic bridge management. LCP is mainly influenced by the structural environment in nature. However, in Korea, LCC evaluation has been performed with the LCP of foreign research results or only with the pieces of professional engineers' opinion. Therefore, to alleviate the drawbacks of foreign LCP and to enhance the reliability of current LCP, LCP should be established using the available data in bridge management system(BMS). In this study, LCP along with a subset of the BMS data was investigated and several mathematical expressions were proposed and evaluated. The condition ratings of a bridge were trasformed into the numerical indices through fuzzy logics with real field data. From the numerical results, it is concluded that the mathematical LCP model of $y=\sqrt{y^2_0-at}$ is shown to be the fittest one (R=0.815) to express the condition rating varied with the age. This has been drawn from the case study of slab bridges under the similar conditions.

A Study on the Evaluation of Load Carrying Capacity of Highway Bridges based on Structural Reliability Methods (구조신뢰성(構造信賴性) 방법에 의한 도로교(道路橋)의 내하력(耐荷力) 평가(評價)에 관한 연구(硏究))

  • Shin, Jae Chul;Cho, Hyo Nam;Chang, Dong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.107-120
    • /
    • 1987
  • This study is directed for the evolution of the rational approaches to the systematic evaluation of the load carrying capacity of bridges based on the practical and second moment reliability methods. A new approach for the evaluation of load carrying capacity of exsisting bridges is proposed in this study. The key idea behind this approach is in the fact that the load carrying capacity of an existing bridges under extreme traffic truck loadings may be measured by evaluating and classifying the reliability state of the bridge in terms of reliability index(${\beta}$). The rating formulas developed in this study are applied for the evaluation of load carrying capacity of the several actual deteriorated bridges inspected and tested for the capacity rating, and the results are compared with those calculated by using the current rating formulas. It may be concluded that the proposed rating formulas which is derived based on reliability methods, have to eventually replace the current rating formula when the basic statistical data for the resistance and load effects become available in the near future.

  • PDF